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SEADS HISTORY

PREFACE

This report, Volume II, is a historical summary of the Shuttle Entry Air
Data System (SEADS) Program. It contains rationale for approaches taken,
results of technical accomplishments, accounts of technical problems, and an
assessment of lessons learned. The companion report, Volume I, presents a
program summary by subject and covers only program highlights. The included
information was obtained from Vought, Rockwell and NASA, but primarily covers
the Vought activities.

| The early development of the program was conducted by Vought to indicate
feasibility. Rockwell and Vought jointly collaborated on final development to
prove feasibility, and finalize production design. NASA/LaRC conceived the

system and directed the development. NASA/JSC managed the Rockwell production
design activity.

Development ultimately proved successful, leading to fabrication of SEADS
for early incorporation on Shuttle 0V-102 for flight test.

Acknowledgement is given to the following principals who had responsi-
bility for managing their respective areas of activity:

. P. M. Siemers, III, NASA/LaRC, overall system development & Technical
Manager of Vought activities

. R. L. Cox, NASA/JSC, Technical Manager of Rockwell activities
. R. M. Hamilton, Rockwell International

. D. M. While, Vought Corporation.
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1.0 INTRODUCTION

Shuttle Entry Air Data System (SEADS), illustrated on Figure 1l-1, is an
innovative, flush mounted orifice, air data system, mounted in the Reinforced
. Carbon-Carbon (RCC) nose cap of the Shuttle Orbiter. Conceived by NASA/LaRC,
it provides accurate data across the Orbiter speed range throughout the
sensible atmospheric flight region. It is comprised of & cruciform array of
fourteen total pressure ports located in the rose cap, that, when coupled with
static pressure ports mounted on the fuselage, permits computation of angle of
attack, angle of side slip, Mach number, and velocity. The large nurher of
ports includes a degree of redundancy, such that the loss of data from some of
the sensors produces only modest degradation of system accuracy.

The system is composed of the penetration assemblies, two tube arrays to
transmi* the pressure data through two manifolds to a series of transducers,
mounted to the aft side of the nose cap support bulkhead, and a data
recorder. The recorded data is analyzed after flight to provide the desired
flight information. The system is capable of being expanded to provide real
time data for flight profile management.

The production design penetration assembly is shown on Figure 1-2. A
mockup of the system is shown by the photo on Figure 1-3 to better illustrate
the two manifolds and the pressure tubes configurations. The production SEADS
nose cap is shown on Figures 1-4 & 1-5 and shows the crucifcrm configuration
of the pressure port array.

SEADS is currently a Shuttle OEX program, approved for early introduction
on Orbiter OV-102. 1It's initial function will be to support the data analysis
of other OEX prograus by providing the necessary accurate flight data.




2.0 DEVELOPMENT SUMMARY

Development of the mechanical components of SEADS began in October, 1975
with the initial goal of conceiving approaches for incorporating pressure
ports into the Orbiter nose cap and evaluating the 1local effect of the
resultant holes. The design reocuirement was 2520F maximum surface temperature
on the nose cap. A number of approaches were conceived and evaluated with
promising candidates selected for test in a plasma arc. These were found to
lack sufficient mission 1life, requiring both material and configuration
changes. However, it was established in 15 hours of plasma arc exposure, that
the presence of a countersunk hole to accept the pressure port assembly; was
not 1locally detrimental to the nose cap RCC material. This, coupled with
limited pressure port success in test, was sufficiently encouraging to proceed
with development.

Utilizing the best features from the initially tested concepts, tke
pressure port assembly was rcdesigned to correct deficiencies. Three models
were tested in the plasma arc of one geometric configuration, but with
material variations. Two survived the planned 5-hour test, one with a coated
columbium port and one with a silicon carbide coated graphite port.

A systems concept evaluation was also conducted, consisting of thermal
analysis of the penetration assembly and dynamic analysis of both the small
diameter pressure tubes and the support posts (manifolds) that collected seven
each pressure tubes. Concept feasibility was established at the analytic
level.

With this impetus more sophisticated analyses were conducted consisting of
buckling analysis of the nose cap with SEADS holes, a detailed stress analysis
for the region around a non-circular hole in the nose cap, a more refined
thermal analysis of windward and leeward penetration assemblies, and a thermal
analysis of the nose cap to assess heat blockage from the two support posts.
Each of these analyses proved the SEADS design to be feasible.

An entry trajectory change was introduced that raised maximum design
temperature to 2660F, prompting another modification to the selection of
materials and produced the final configuration. This resulted in the use of
all coated columbium components, including the pressure tubes, although coated
graphite ports were retained as a backup in the event sufficient mission life
could not be extracted from the coated columbium ports. Two adaitional models
were tested in the plasma arc in an effort to establish satisfactory
performance at the increased temperature. The models differed only in the
above noted port material, and each survived the planned 5-hour exposure.
However, it could not be proven that the desired test temperature was actually
achieved. It was therefore necessary to build another plasma arc model for
test in another plasma arc facility to conclusively demonstrate survivability
at the design temperature. Only the columbium pressure port model was
tested. Not only was it shown that the penetration assembly would meet the
design temperature requirements, but an inadvertent overshoot to 2950F was
experienced without detrimental effects. The penetration assembly was thus
qualified.

Two other component tests were conducted to demonstrete, primarily, the

acceptability of the pressure tubes to survive the design environments ard to
validate the dynamic analysis. The first »f these was a vibration test of the
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left hand set of pressure ports and consisted of seven pressure port
assemblies, seven pressure tubes, and the associated uwanifold and Itas
insulation system. This unique test involved two simultaneously operating,
independently controlled shakers, one introducing the vibration environment
from nose cap acoustic response, and one simulating the nose cap support
bulkhead vibration enviromment, applied to the base of the manifold. The
input levels for this test were derived from response data measured during the
Orbiter nose cap assembly qualification test, conducted at NASA/JSC. A
thorough pre and post test analysis of pressure tubes response was conducted
by Rockwell to support this test. Test results and supporting analysis
demonstrated the acceptable performance of +the SEADS system in a
vibro-acoustic enviromment.

The second major test was one conceived to evaluate the low cycle thermal
fatigue life of selected pressure tubes in the presence of thermal cycling.
The concern was the stresses ..nduced from constrained thermal expansion, asa
well as possible creep at high temperature, leading to induced strain in the
tubes, when returned to room temperature. Although it was intended to impose
a lovw pressure oxidizing atmosphere, representing the entry enviromment, the
bare graphite heating elements oxidized sufficiently to create a reducing,
rather than an oxidizing atmosphere. Instead of producing a more benign
environment, the reducing atmosphere actually caused embrittling of the coated
columbium pressure tubes and resalted in premature failure. It was
encouraging that the embrittled tubes survived for a minimum of 68 mission
cycles, lending confidence that the tubes, operating in the correct
environment, would produce a safe feilure margin far in excess of the 25-30
mission life projected for the penetratior assembly.

The successful accomplishment of the foregoing component tests resulted in
acceptance of SEADS as a viable system, and a production assembly was
fabricated for early incorporation on vehicle OV-102 for flight test.

The remainder of this report expands upon these highlights, providing
rationale for approaches, results of analyses/tests, and identifies lessons
learned. It is presented in an essentially chronological order, modified only
for a more rational grouping of like activities.




3.0 EARLY CONCEPT DEFINITION DEVELOPMENT

The ini' al objectives of the program were to devise a scheme for
attaching fourteen pressure ports to the Orbiter nose cap and to demonstrate
that the presence of a hole in the nose cap was not detrimental to the local
thermal/oxidation/structural integrity of the silicon carbide coated
Reinforced Carbon-Carbun (RCC) nose cap. The production nose cap dome, where
the pressure ports would be attached is 19 plies (0.25 in.) thick, although
localized beefup was considered desirable for countersinking and stiffening.
Local nose cap thickness variations up to :}O% had to be accommodated.

The most significant environmental design environments, that actually
influenced concept generation and evaluation, included a maximum surface
temperature of 2520F for entry trajectory 14040, acoustic noise level during
launch of 157 db O. A., and an induced deflection during launch of 0.10 in. in
any direction. The latter is the result of the relative motion between the
nose cap and its support bulkhead, and is caused primarily by bulkhead flexure.

Other design guidelines or objectives were (1) the penetration assembly
mission life should at least equal that of the nose cap, (2) the penetration
assembly should not compromise the life of the nose cap, and (3) replacement
of a penetration assembly shouli be accomplished without damaging the nose cap.

Further, at the outset of the program it was estimated that pressure tubes
roughly 1/16 - 1/8 inch diameter would be satisfactory near the nose cap,
recognizing that a more definitive requirement would ultimately be established.

This early work is documented in reference 1.

3.1 Concegts

In developing concepts for attaching small diameter tubes to the nose cap
it was judged that there would be no reliable method of directly anchoring a
thin walled tube without some intermediary support struc ture. That ias,
bonding, or flaring and bonding, a small pressure tube to the nose cap was
believed to be too risky in the presence of vibration and the push/pull
associated with launch deflections and tube thermal expansion/contraction
during entry. Hence, all concepts given serious consideration employed some
plug (port) installed in the nose cap to which the pressure tube would be
secured.

The material for the plug had to provide a high temperature capability,
but also had to have a high emittance to avoid temperatures, possibly
excessive to the adjacent nose cap coating. Some materials meeting these
criteria included silicon carbide, silicon nitride, silicon carbide coated
graphite, and silicide coated refractory alloys. These materials were given
some consideration in concept generation.

Some fourteen candidate designs for the penetration assembly were
conceiv-1 and evaluated in accordance with a set of evaluation criteria. Each
of the concepts involved a plug or port inserted into a countersunk or
counterbored hole in the nose cap, a retention nut, some locking feature to
prevent plug/nut separation, a pressure tube and its retention feature, and a
thermocouple installation. (Throughout much of the program, thermocouple(s)
were included in the design of the penetration assembly to measure entry
temperature. This requirement was subsequently eliminated in the final stage

N




of development because of complexity and the expected ability to obtain
satisfactory nose cap temperatures with radiometers.) The concepts are
included as Appendix A.

Each concept was examined to assess advantages and disadvantages and a
simple point count system was used for ranking and selection. Evaluation
criteria employed are shown on Table 3-1. Most of these are self explanatory,
but it should be noted that weight, the first item listed, was actually the
least important consideration, since the total weight of the penetration
assemblies was expected to be small, regsrdless of the configuration or
materials selectiion.

Many of the concepts employed & bonded system, such as Sermetel or
Astroceram, for either retention or locking. This was deemed unreliable for
retention in the presence of the extreme and multiple temperature excursions
and the high level of acoustic noise. In addition, bonding to the RCC was
considered undesirable because of possible damage to the RCC coating upon
removal and replacement of the penetration assembly. For these reasons,
bonded type systems for retention were downgraded, 1leading to their
elimination.

The results of the evaluation produced three candidates for design and
plasma arc test as shown on Figures 3%-1, %-2 and 3%-3. These are discussed in
detail later.

3.2 Materials Selection

As an aid to materials selection for the above noted concepts, several
materials were considered for application to each component, and candidates
were tested at the appropriate temperature for materials compatibility.

As noted previously, the port required a material with high emittance,
which eliminated some materials 1like alumina, 2zirconia, and noble metals.
Materials such as silicon carbide, siliconized graphite, or coated refractory
metals have the potential for satiafying the port requirements. Silicon
carbide was eliminated because it would require molding and grinding to
achieve the desired shapes with attendant long lead time and high cost for the
limited number of parts involved. Coated (silicide) refractory metals have
thin coatings (a few mils thick), leading to concern of coating integrity in
threaded regions and the danger imposed by the abrasiveness of the silicon
carbide coating on the siliconide coating. (Both of these concerns were later
found to be not restrictive for the life of the system.)

Because of our experience with machining and coating graphite, it was
decided to select this material for the 1initial plesma test models,
recognizing that this phase of the program was primarily exploratory.

The port retention nuts on two of the concepts permitted a wider selection
of materials, since high emittance was not a concern for this internal
component. However, it was decided to use siliconized graphite for one model
and metal for the other.

Concept 6 (Figure 3-2) employed a union, which by virtue of its
configuration, was more amenable to fabrication from metal. Noble metals,
coated refractory metals, and possibly super alloys (depending on temperature)




ALITTEYIINYHIYIINI
SN1VLS IN3Wd013A3d
ALITTEYTIVAY STVIYHILYW

ERCVENALEY
JdvY 1vd3y

JONYNIINTVW

SNOT1VY¥3d0 LH9TA
(31vI148Y4-SY

J19¥103dSNI

N9 11V
NOT1v@vyS3Qq ¥v3M
NOT1v¥avy93Q NOTLYGIX0/1WWY3HL

3417 NOISSIW
(HONOYHL 3INTHS ONY MOT4) ONITY3S

SSINAIIMNY
34vS 11vd
AINYANNA3Y

AL3YS

ALy NOTLO3Ary
S3ILITIIVS
(224 HLIM QNV) T04.LNOD 3FINWH3I0L

ALTT1EYI THEVS
(Sd3LS NV Sdv9) SSINHLOOWS JTWYNAQOY 3V

(SNOT133143d
1404dnS ANV d¥3 3SON) G3INANI
(NOTLVHEIA “Qv0T) Q311ddV
(373344 ‘NIVY “HNLSIOW) WHNLVN

JONVYTTI0L TVINIWNOY IANS

(224 ‘NOISNVdX3 TWWY3HL) SSILS
(S104S 10H) FNLVYIdW3L
| HUELS

ALTTIE1LYdI0)

INIWIIV 4R
WILINI

1507
LHOT3M

VIY3LIYD NOILOFNSS
SNOT1v¥3QISNOD N91S3A

T-¢ T19VL

Y S W



were considered to be candidates. Coated refractories were dismissed in these
early tests for the reasons previously cited, but they remained candidates for
future exploration. O0f the noble metals only platinum was considered
potentially acceptable from cost and machinability standpoints. However, it
was known that platinum is attacked by free silicon to form a low melting
point eutectic. The question was, is there sufficient free silicon available
in the siliconized coating on RCC or graphite to cause a problem? The
chemical compatibility tests discussed below sought to aaswer this question.
The oxide dispersed alloys were believed to be marginal on melt temperature
for this application, but one material, TDNilr, was nevertheleas tested for
chemical compatibility.

For pressure tube retention nuts remote from nose cap surface the metals
noted above were the most likely candidates. The lowered temperature at this
location enhanced the possibility of using super alloys.

Pressure tubes needed to be metallic to withstand dynamic environments,
but the availability of high temperature ductile tube products limited the
candidates. Inconel 702 is routinely used for thermocouple sheaths at
temperatures in tne 2300F - 2400F range, making it a likely candidate if the
environment was not too hot. Platinum tubing is also readily available and if
it did not suffer a reaction from the silicon enviromment, it was believed to
be a safe choice from a temperature standpoint.

A very modest chemical compatibility test program was conducted to assess
acceptance of the candidate materials in combination with siliconized RCC and
several bonding materials. Bonding materials were at the time still under
consideration as a locking feature, a means of attaching thermocouples, or
even attaching components together, as a backup to mechanical attachment. The
test was conducted as illustrated in Figure 3-4 and had a time varying
temperature and pressure representative of the design entry trajectory. Six
entry missions were imposed. Results are summarized on Table 3-2.

Several things are noteworthy from an examiration of Table 3-2. Both
platinum and iridium containing materials produced no reaction with the
siliconized RCC, which was at the time encouraging, because of the high
temperature capability of these materials. In addition, neither Huntington
Alloy 953E, TDNiCr, or Inconel 702 melted, nor produced a reaction with RrCC,
giving some encouragement to their applicability. However, the cobalt alloy,
Haynes 25, reacted with RCC causing the alloy to disintegrate. Since some of
these tests later proved to be grossly misleading, it would be necessary to
re-evaluate cobalt alloys in combination with siliconized RCC, should a
combination of these two materials be proposed for some future application.

As indicated above and confirmel by the plasma arc test results, the
chemical compatibility tests proved to be inadequate in judging the adejuacy
of certain of the materials. In particular, platinum was indeed found to
react with the siliconized coating during plasma testing in as little as two
hours. The reason for this disparity is not clear, although it is postulated
that there was greater pressure at the contact surfaces of the plasma models
than for the specimens used in the chemical compatibility tests. In fact, it
may be possible that in fabricating the test specimens there was no intimate
contact, and there was insufficient silicon vapor to produce a reaction. As a
means of avoiding this, the specimens should be weighted to assure contact
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pressure and this was done in subsequent chemical compatibility tests.
Further, the specimens should be somewhat larger, since in these tests, the
test material was bonded to the RCC. It is feasible that bonding material got
between the two test materials and voided the intimate contact. This would be
less likely with larger and weighted specimens.

A self imposed criticism is, that with the known possibility of chemical
reaction between coated RCC and platinum, we should have challenged the test
results and retested in another fashion as a double check. Perhaps we were so
elated over the possibility of being able to use a material that did not
require coating for some of the more complicated components, that it clouded
our judgement.

3.3 Plasma Arc Test Models

Three models were fabricated for test in a NASA/LaRC plasma arc,
designated Facility B. These models were configured as shown by Figures 3-1,
3-2 and 3-3. Model 13 was also rebuilt after the first test sequence to
replace the platinum aut with YDNiCrAl, an oxide dispersion strengthened (ODS)
alloy, and to include a pressure tube of Inconel 702 to replace the platinum.
Each of these models employed a 2.8 in. dia., 19-plies RCC disc to represent
the nose cap. This material was not given the post coating impregnation of
tetra-ethyl orthosilicate (TEOS). In addition a calibrator model was built in
the same fashion as the test models, except that a plain RCC disc without
penetration assembly was used. The calibrator served two purposes: (1) it
was used to establish the plasma arc operating conditions, and (2) it was
exposed in the plasma arc for 15 hours to compare subsurface attack of the RCC
with one of the models, having a penetration assembly, and exposed for the
same period of time.

Since part of the program involved an assessment of thermocouple response
and 1life, each test model was instrumented at several locations with
platinum/rhodium, chromel/alumel, and tungsten/rhenium thermocouples, the
latter for diagnostic purposes, because it was realized that they would
ultimately oxidize, embrittle, and fail. The calibrator employed only
tungsten/rhenium thermocouples.

The approach that we take in plasma arc testing is to establish the test
conditions, based on thermocouple temperature, and determine the correlation
with optical pyrometers. When the thermocouples fail, the optical pyrometers
continue to be used for surface temperature measurement. In effect this
becomes an in situ calibration of the optical pyrometers. We believe this
eliminates optical temperature measurement errors, that are sensitive to
spectral emittance variations of the model surface; possible reflections from
the arc; and window, mirror, and angle corrections in the optical path.

The target conditions for these tests were 2500F surface temperature, 0.05
atmosphere pressure, and 15 hours duration. Only one model survived for the
full duratiorn. Each exposure was for 15 minutes each, which provided multiple
heating and cooling cycles.

Model Concept 1A, Figure 3-1, was teasted for 15 hours. Upon disassembly,
it was noted that significant subsurface oxidation occurred along the central
hole of the graphite port, but there was no oxidation evident on the graphite
nut. It was feared that the small diameter port hole may coat poorly, and the
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test confirmed this. On the other hand, the larger diameter hole in the nut
as well as both the internal and external threads on the two parts, coated
quite well. The platinum pressure tube and washers had reacted with the
graphite coating, melted, and welded the graphite components together.

The most significant finding from this test was that the RCC disc showed
no evidence that subsurface oxidation was any greater than that experienced by
the calibrator lisc. This was determined from photomicrographic examination
of the cross sectioned discs. Thus, one of the initial key concerns,
regarding the introduction of holes in the nose cap, was eliminated. In
addition, it was estimated that the 15 hours of exposure was in excess of the
expected life of the nose cap and thus the presence of holes would not
compromise its' life.

Model Concept 6, Figure 3-2, was exposed for only 1.97 hours, test
termination being due to platinum melting because of reaction with the coated
graphite. The melt essentially welded all components together.

The test of Model Concept 13A, Figure 3-3, with the platinum nut and
pressure tube was terminated after 3.58 hours, again due to platinum reaction
with the siliconized graphite. This model also demonstrated a degree of
fragility, when the graphite port was broken during attempted disassembly of
the nut.

Model 13 was reconfigured for another test by using a new graphite port,
nickel nut, and Tnconel 702 pressure tube. It was designated 13B. Total
exposure was 3.96 hours, termination being due to loss of the pressure tube
and fracture of the graphite port during attempted disassembly. Port breakage
was believed to be due to torqueing the nut in the wrong direction, since
these were left hand threads. Subsequent examination of the model revealed
that the nut spun freely on the graphite port so that proper disassembly
should have been conducted with ease. The problem is related to the test
laboratory's unfamiliarity with the design configuration. The lesson to be
learned is that proper instruction needs to be given to laboratory personnel,
particularly when non-standard designs are employed.

The loss of the pressure tube was the result of melting, where it came in
contact with the graphite. Up to this point there had been no thermal
analysis of the plasma models, but it was expected that the Inconel 702 tube
would be operating near its temperature 1limit. The test confirmed this.
There was, however, no melting of the YDNiCrAl nut, suggesting that this
material has a higher operating limit than the Inconel 702.

The chromel/alumel thermocouples on these models operated for a maximum of
1.97 hours, a time span unacceptably low for a flight system. Apparently, the
internals of the models were too hot for their application. No data was
obtained from the platinum/rhodium thermocouples, even during the initial
exposure cycles. It was believed, and later confirmed, that the problem was
due to lack of electrical grounding, which allowed signal interference from
facility electrical noise. In subsequent tests grounding was provided and
these type thermocouples responded adequately.

3.4 Summary of Findings

While this phase of the program did not produce the desired success, it




did produce some satisfactory results and provided impetus for continuing the
development of SEADS. Some of the more significant satisfactory results were:

(1)

The presence of a countersunk hole in the RCC was shown to have no
local detrimental effect upon the material.

Graphite parts, when configured to enhance coatability will indeed
coat acceptably, including both internal and external threads; and
some multiple mission life can be expected.

The YDNiCrAl alloy performed acceptably at a temperature estimated to
be in the 2400F range. It did not react with the silicon carbide
coating and was readily disassembled. (It should be noted that this
material was pre-oxidized before assembly to reduce the possibility
of sticking during test.)

On the negative side, unsatisfactory results were as follows:

(1)

(2)

(3)

None of the configurations tested demonstrated an acceptable mission
life.

Platinum cannot come in contact with the siliconized coating used on
RCC and graphite components.

Neither chromel/alumel nor platinum/rhodium thermocouples were
demonstrated to provide acceptable life. (However, in subsequent
tests with grounded platinum/rhodium thermocouples satisfactory

performance resulted.)

Inconel 702 melted during test, probably due to excessive tempera-
ture, since later chemical compatibility tests showed no reaction
with the silicon carbide coating up to 2450F.




4.0 SECOND PHASE DESIGN AND TEST

2 While the initial phase of this program was disappointing iv that none of
the three originally tested concepts performed satisfactorily, valuable
insight was gained, such that there was a high degree of confidence, that
improvements could be introduced to gain success.

The second phase of the program consisted of the following major elements:

(1) Refine the best penetration assembly design to improve fabricability,
mission life, and reliability.

(2) Conduct a materials study to select alternate materials for the
penetration assembly.

- (3) Conduct a study to investigate alternate thermocouples for improved
performance.

(4) Develop a concept for routing pressure tubes and thermocouples from
the nose cap through the nose cap support bulkhead and provide
supporting analyses.

(5) Design, fabricate, and plasma test three improved penetration
assembly designs and evaluate results.

This phase of the program is documented in reference 2.

Design requirements were modified somewhat for this phase and additional
details were provided. The entry design trajectcry was changed to 14414.1,
which still produced a stagnation temperature of 2520F. The acoustic noise
level remained at 157 db, but resultant calculated vibration respose power
spectral densities for the nose cap and support bulkhead were obtained from
Rockwell. Maximum integrated levels were 114 GRMS at the nose cap and 29.5
GRMS at the support bulkhead. Surface smoothness requirements included
+ 0.017 in. step allowance between the port and the nose cap; and an allowable
gap between the edge of the port and the nose cap of 0.065 in. was to be
measured one edge radius deep or at a maximum depth of 0.C65 in.

Additional guidelines were introduced and included:

(1) The mission life goal was to be equivalent to the nose cap (about 40
missions) and the penetration assembly should not compromise the life
of the nose cap, either during flight operations or during
replacement of a penetration assembly.

(2) The penetration assembly strength capability was to be such that it
was not the weak link in the system. In effect this meant that
failure of the pressure tube should occur at a 1load level
substantially below that of the penetration assembly, or nose cap.

4.1 Penetration Assembly Concept Refinement

As a result of the initial plasma arc tests it was judged that Concept 6,
Figure 3-2, would offer the best opportunity for success, once different
materials and design refinements were incorporated. This conclusion was based
upon the inherent ruggedness of the metallic components and the configuration
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of the port, which allowed good coatability if graphite was selected as &
backup material. However, Concept 6 required some refinement to provide a
better method for mounting +hermocouples, and, depending vupon materials
selection, a means of providing a chemical barrier in the event incompatible
materials offered overriding benefits.

Optional concepts are pictured in Figure 4-1 for conmparison with Concept
6. Rationale and salient features of these alternate configurations are
described below.

To review Concept 6 the plug was conceived as possibly being coated
graphite. Therefore, an internal thread was required to provide a
sufficiently large bore to permit coating. Furthermore, internal threads on
graphite coat nuch more reliably than external threads. And the flexural
strength of internslly threaded graphite is greater than for external threads
because of the lower stress in the root of the thread and the inherently
greater moment of inertia for a given assembly diameter.

A metalic union was employed for strength and to simplify installation in
the nose cap. The plug, spacer, union and lockwasher were to be installed
first. The pressure tube would then be installed without having & number of
loose parts to juggle at this time.

The RCC spacer was used to simplify machining of the union, permit easier
incorporation of the locking feature, and provide a modest standoff from the
hotter nose cap. 1In addition, it provides for axial growth of the columbium
relative to the RCC to offset radial columbium growth, thereby preventing RCC
fracture.

The French lockwasher (bent in place) was a simple technique for keying
the plug to the wunion. The nut was in turn lockwired to the French
lockwasher. Positive 1locking is required, since assembly is essentially
finger tight to avoid over-stressing the graphite, and to minimize any
tendency to self-bond at high bearing pressure and high temperature.

The pressure tube used a welded-on washer or collar to anchor the tube
between the nut and union. The extended end of the tube provided added
stiffness and strength for tube bending moments.

Figure 4-1 (A) illustrates an alternative to the welded washer concept by
using a flared tube. This is a workable approach, although there is less
bending moment restraint. However, the main reason for not employing a flared
tube in this phase of the program was the off-the-shelf unavailebility of the
desired 5/32 in. dia. tube material. This forced the test articles to 3/3%2
in. dia. tubing, which prevented flaring. Although the welded washer
technique provided an adequate pressure seal in the plasma arc tests, the
electron beam welding of the Inconel 702 tube/wsasher joint proved structurally
inadequate, when the weld broke during test.

Concept 6 did not provide a good anchoring point for thermocouples, nor
was it intended to, since the measurement of temperatures on that model was
primarily exploratory to determine feasibility of measuring temperature
somewhere on the model for extrapolation to and correlation with the RCC
surface temperature. Respcnse of the tungsten rhenium thermocouples in Phase
I tests demonstrated the practicality of temperature measurement remote from
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the surface of the nose cap by extrapolation to the surface temperature, so
this design refinement sought to develop a practical approach for installation
and anchoring of thermocouples.

Two thermocouple installation schemes are pictured in Figure 4-1 (B) and
(C). Each employs a fundamentally desirable feature of bench assembling to an
anchor plate or mount that does not have to be rotated as component parts are
screwed together.

Depending on material temperature capability, the thermocouples could
theoretically be 1located close to the RCC skin as shown in the alternate
location in Figure 5(B) or located farther away in the cooler region between
the union flange and spacer indicated by the primary location. The 1latter
lccation was chosen for model tests in this program phase, because it allowed
greater flexibility of material selection for the thermocouple mount.

The two thermocouple anchoring schemes, depicted in Figure 5, represent
(1) a machined mount drilled for the thermocouple, which is then staked in
place for securing, and (2) a sheet metal mount, which is bent and crimped
over the thermocouple. In the latter design the thermocouple anchoring method
is integrated into the lockwasher, but could be a separate part. The machined
mount was selected for test because temperature measurement at the bottom of
the hole was believed to be more precise than with an exposed thermocouple
tip, as with the (C) approach. Alsc, staking was considered more positive
than crimping sheet metal for anchoring.

In selecting the most desirable material for each part, it was determined
that certain of the contacting materials may not be compatible with each
other. Therefore, some chemical barrier would be required for mutual
protection. Possible schemes for achieving the chemical barrier with iridium,
which is compatible with all the materials of interest, are illustrated in
Figure 4-1 (D) and (E).

In Figure 4-1 (D), as an example, an iridium washer and welded washer/tube
assembly could provide the necessary standoff to permit a platinum pressure
tube to be used in combination with a silicide coated refractory union and
nut. Similar chemical insulators are shown in Figure 4-1 (E) as an example of
protecting the themmocouple mount, which could be platinum, from a silicide
coated union. Yet another application of a chemical barrier is the coiled
wire illustrated in Figure 4-1 (E). This was envisioned as an iridium coil
that would provide a standoff between possibly &« platinum union and a silicon
carbide coated graphite plug.

The various schemes, discussed above, provided sufficient alternatives to
permit the selection of material combinations for evaluation in the plasma arc
test program. The discussion of the candidate material combinations,
selections for test, and final design details are covered in Sections 4.3 and

4.5.

4.2 Thermal Analysis

A 50-node axi-symmetric thermal math model wes prepared for the Concept 6
plasma test article at the conclusion of the first phase of the program. The
model was checked out against thermal response in plasma test, as measured by
the thermocouples. The model is illustrated in Figure 4-2, while typical
results are shown in Figure 4-3, where predictions are compared against
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thermocouple data on an early test exposure. It was recognized that closer
agreement would result from slightly lowering the recovery temperature, while
slightly raising the time varying insulation temperature.

This thermal model was, thus, further refined to produce a temperature
distribution and response rate with better correlation ¢to experimental
values. Model geometry was then adjusted to reflect installation in the nose
cap, as opposed to the boundary conditions of the plasma models. Details of
the analysis are provided in reference (3).

The thermal analysis was conducted in advance of and as a guide to, the
selection of the final materials and design configuration for the plasma test
models. As such, the analytic models do not exactly reflect the final test
configurations, but the results were deemed adequate to deacribe anticipated
temperatures.

Three models wesre analyzed, differing in the material of the plug:
graphite, silic n carbide, and columbium. Analyses were conducted for a high
emittance (0.85) and a low emittance (0.15) union, nut, and washer to bound
the problem. The trajectory analyzed is that designated as 14414.1.

Maximum temperatures, which occur at about 600 sec., are shown on Figure
4-4 for the three plug materials, and with the low emittance union, nut, and
washer. Note that there is little difference in temperature between the three.

Using the high emittance union, nut, and washer for the columbium plug
configuration, the union maximum temperature decreased by 19F, the nut
decreased by 55F, and the washer decreased by 26F. Similar analysis of the
graphite plug yields reductions of 25F, 49F and 33F, respectively. The low
emittance results would be applicable to platinum components, while the high
emittance temperatures are applicable to columbium, molybdenum, or oxidized
nickel alloy parts.

In summary, design temperatures for the various components covering the
emittance range, were as follows:

Plug 2520F

Union 2455 ~ 2485F
Washer 2395 - 2430F
Nut 2370 -~ 2430F
Pressure Tube 2395 - 2440F

These temperatures reflect the maximums based upon higher temperature adjacent

nodes, where applicable, rather than the average temperature of the node of
interest.

The thermal analysis results were viewed as an aid in guiding the chemical
compatibility tests and final selection of materials for plasma test articles.

4.3 Alternate Materials Evaluation

From the initial study phase, it was apparent that additional materials
evaluations were necessary to eliminate the chemical attack experienced on the
platinum components. It was also desired to examine other possible plug
materials in the event coating deficiencies of the graphite plug could not be
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resolved. Therefore, a study was undertaken to identify alternate materials
and then perform more rigorous chemical compatibility testing than that
conducted in Phase I.

The objectives of this task were to identify mature candidate materials
that could be fabricated into the desired shapes, determine chemical
compatibility between interfacing materials, and assess the inclination toward
self-bonding at elevated temperature and modest pressure. Elimination of
self-bonding is important for ease of disassembly to reduce possible damage to
the nose cap during component inspection/replacement.

The penetration assembly is illustrated in Figure 4-5 to show the
relationship between the various elements. Candidate material combinations,
believed to be the most attractive for the assembly, are summarized in Table
4-1. Consideration was, also, given to ceramic plug materials that had high
strength and high emittance, but because of their inability to be fabricated
into the desired configuration with acceptable tolerances, they were
eliminated. Examples of this were silicon carbide and silicon nitride.

A brief discussion of the rationale for the selection of these materials
for evaluation is given below.

Vought coated Stackpole 2020 graphite - This material combination had
shown good performance in previous tests on those areas readily coatable. I
was believed that redesign .0 improve coatability in the internal threaded
region would produce a viable candidate.

CVD SiC ccated Stackpole 2020 graphite - This material system had produced
excellent life on L-.uter bars, used in temperature testing of Shuttle leading
edge panels. Its' main draw back is that the coating is a buildup systen,
making design and dimensional control of threadec regions and center port hole
difficult. It remained a backup approach in the event that the Vought
diffusion coating could not be adequately applied in the internal threaded
region. However, the Vought diffusion coating ultimately proved acceptable
and the CVD coating was not used.

Silicide coated columbium or molybdenum - Either of these materials was
advertised as having the potential for surviving the temperatures of
interest. It was hoped that one of these would produce oxidation resistance
sufficient to replace the coated graphite plug. Inherently, these refractory
materials are less brittle than the graphites and therefore should provide
greater reliability.

Nickel alloy YDNiCrAl - This ODS alloy does not require a coating and has
one of the highest temperature capabilities of the super alloys. Although it
would be pushed to it's temperature 1limit, it was hoped that it would be
serviceable for some of the internal components.

Nickel alloy Inconel 702 - This alloy was considered to have potential for
the pressure tube application, since it is used as a thermocouple sheath into
the 2400F region. It requires no coating for oxidation protection.

Platinum or Platinum Rhodium alloys - These noble metals have a
temperature capability far in excess of requirements and require no oxidation
protection coating. They must, however, be protected against contact w'th
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silicon based coatings, since they react to produce low melting point
eutectics.

Iridium - This noble metal also has a temperature capability ir excess of
requirements and requires no oxidation protection coating. Application of

this material was confined to those areas requiring a chemical barrier between
incompatible materials.

4.3.1 Test Technique - All of the materials except the noble metals
and Inconel 702 were tested as 3/4" diameter x 1/4" thick buttons. The noble
metals were tested as wire segments, while the Inconel 702 specimens were
configured by slitting and flatening tube material. Materials were stacked in
appropriate combinations and weighted with pieces of coated graphite blocks.
This provided only modest pressure.

Testing was conducted in an electrically heated air furnace with no forced
circulation. Exposure temperatures were 2500F, 2400F and 2450F, in that order
for one-hour cycles, except for ore three-hour cycle at 2500F. Total exposure
time was 5-hour at 2500F, 2-hour at 2450F, and 2-hour at 2400F.

Specimens were visually examined after each exposure cycle for reactions,
and hand tested for self-bonding tendency. Observations were recorded. In
some cases the same specimens were exposed throughout the test program, while
in others, new specimens were introduced periodically to test new combinations
or variations, or to retest previously tested combinations.

4.3.2 Test Results - Summaries of test results are provided as Tables
4-2 and 4-3 for acceptable and unacceptable meterial combinations,
respectively, based on the furnace tests. A photograph of a typical platen of
specimens is shown in PFigure 4-6. In addition to the summary results the
following additioral observations and conclusions are offered.

Other than the YDNiCrAl specimens, none of the materials used in the first
test were pre-oxidized, and certain reactions occurred that were not evident
in subsequent exposures. This led to the conclusion that the i-itial
oxidation treatment was bensficial to chemical compatibility. Therefore it
wvas decided that all test components, other than the RCC buttons, representing
the nose cap, would receive a pre-oxidation treatment before assembly. All
compatible materials listed in Table 4-2 are based upon having a pre-oxidation
treatment, except the RCC with TEOS coating as noted. The pre-oxidation
treatment selected was 1 hour exposure at 2100F in an air furnace. This
proved adequate, and therefore, no other conditions were examined.

The coated columbium buttons discolored and formed a scale; and in some
cases crazing was quite evident. The discoloration proceeded from a green
tint to black as exposure time increased. The columbium also stuck to itself
on the first exposure, but when pre-oxidized there was no further problem.
Columbium buttons, exposed for the full 9 hours, showed no eviderce of
subsurface attack, as determined by picking at the surface in an attempt to
uncover cavities beneath the coating.
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TABLE L-2 - SUMMARY OF FINDINGS
CHEMICALLY COMPATIYBLE COMBINATIONS

Material

RCC impregnated
with TEOS
(See Note 1)

RCC without
TEOS

Molybdenum
TIN Alloy
With 518 Coating

Columbium
C-103 Alloy
With RS12E Coating

YON{CrAl

Inconel 702

CVD Coated
Stackpole 2020
Graphite

Iridium

Platinum

NOTES: (1)

Chemically Compatible with

Molybdenum
Columbium
CVD Coated Graphite

Iridium
Inconel 702
YDNiCrAl

Molybdenum
RCC with TEOS
Iridium
YDNiCrAl

Inconel 702

Columbium

RCC with TEOS
Iridium
YONiCrAl

YON1CrAl

Molybdenum
Columbium

Inconel 702
Iridium

CVD Coated Graphite
RCC without TEOS
Platinum Rhodium

YON{CrAl

Molybdenum

Platinum & Platinum Rhodium
Iridium

RCC without TEOS

RCC with TEOS
Iridium
YON{1CrAl

Platinum

Molybdenum

Columbium

RCC with TEOS (Preoxidized)
CVD Coated Graphite
YONTCrAY

Incone) 702

Iridium
Inconel 702
YDON{CrAl

Up to "X" °F
test temperature

2500
2500
2500

2500
2450

2450

2500
2500
2500
2450

2450

2500
2500
2500
2450

2450
2450
2450
2450
2450
2450
2450
2400

2450

2450
2450
2450
2450

Only the RCC in this test combinatfon was not pre-oxidized so as to represent the

nose cap at first flight.

A1l other combinations assume pre-oxidized components.




TABLE 4-3 - SUMMARY OF FINDINGS
CHEMICALLY INCOMPATIBLE COMBINATIONS

Material , Chemically Incompatible with:

Platinum & Columbium

Platinum Rhodium Molybdenum

RCC with or without TEOS
CVD Coated Graphite




The coated molydbenum performed better than the columbium in that there
was no tendency to self-bond, even on the first cycle, and no scale
developed. When a pit deveioped on a virgin molybdenum button in contact with
YDNiCrAl, self healing apparently took place, since there was no subsurface
attack as evidenced from picking at the coating. Specimens that were exposed
for the full 9 hours had no indication of subsurface attack when tested by the
picking technique.

Several tests were conducted using magnesium oxide slurry (Hg 0) as a
possible meens of preventing self-bonding. This technique was recommended by
one of the material suppliers. However, when specimens were atacked with a
wet slurry, rather than preventing bonding, the slurry produced a rather
tenacious bdon’ which could not be bdbroken, even with heavy rapping on a
table. Later tests, using dry powder or dried thin slurry appeared to be
helpful. As a later development, a S5iC powder slurry using Methocel as a
carrier was employed to prevent self bonding (Section 6.3).

Some of the tests involving platinum and platinum rhodium were expected to
produce chemical incompatibility, but were tested anyway for completeness. In
particular incompatibility with the silicide and silicon carbide coatings
occurred, as expected.

As a result of these tests, which essentially confirmed predicted
acceptable interfacing materials, possible combinations for the penetration
assemblies were as defined in Table 4-1. Selections for plasma test are
described in Section 4-5.

4.4 Alternate Themmocouples Evaluation

The initial plasme tests showed that chromel/alumel thermocouples had
insufficient 1life at the temperatures involved and the platinum rhodium
sheathed thermocouples produced no useful data at all. It was concluded that
the problem with the platinum rhodium thermocouples was a lack of electrical
grounding. However, Vought re-examined other possible thermmocouples to
determine if there were viable alternates. No testing was involved in this
task.

Sheathed thermocouples are required for the application to provide
structural support to the thermocouple wires. Standard sheaths available and
their reported maximum temperature capability are listed below:

Inconel 702 2400F
Platinum 3050F
Columbium 3600F*
Mo lybdenum 4000F*
Tantalum 4500F*

The * temperatures assume operation in an inert enviromment. For an
oxidizing environment a protective coating is required, vhich will limit the
temperature capability of the sheath. Since there could be substantial
flexing of the themmocouples during installation, it was Vought's position
that coated sheaths should be avoided. The Inconel 702 sheath has & marginal
temperature capability and represents too great a risk if thermocouples are
installed close to the RCC skin. That leaves the platinum (or platinum
rhodium) aheath as the most desirable.



For the thermmocouple wires there is a choice of platinum/platinum rhodium
alloys, tungsten/tungsten rhenium alloys, and iridium/iridium rhodium alloys.
The platinum combinations have a temperature capability in the 2800F region,
which is in excess of expected requirements, and remain ductile. The tungsten
and iridium combinations, although having higher temperature capability, tend
toward brittleness and possibly low reliability in a cyclic temperature and
vibration enviromment. The most 1logical selection, therefore, was the
platinum rhodium elements for the temperature ramge and enviromment in waich
the themocouples must operate.

Consultation with Vought personnel also revealed that in cases where there
is a strong electrical field present, such as in a plasma arc facility,
themocouples must be grounded to prevent electrical interference. It
appeared then that there was no reason, other than lack of electrical
grounding, for not obtaining good data from the platinum rhodium thermocouples
in the Phase I plasma tests. Therefore, this thermocouple type was selected
for this program phase with the requirement for grounding.

Platinum/platinum 13% rhodium elements were chosen for their high milivolt
output and a platinum 20% rhodium sheath was selected for strength and
ductility. Two sizes were used: 0.040 inch diameter sheath with 5 mil wire,
and 0.0625 inch diameter sheath with 10 mil wire. The larger size was
selected for better ruggedness, but because it wasn't clear if the temperature
response would be adequate, the smaller diameter was also tested for
comparison. In each case the element juncture was connected to the sheath,
which was used as the grouri. Magnesium oxide was the insulator.

During the plasma test program, discussed in Section 4.5.3, these
thermocouples functioned well for times varying from 5 cycles to 34 cycles
(end of test). However, it is not known whether the early failures occurred
in the active region of the thermocouple or somewhere downstream.

4.5 Plasma Test Models

Three test models and one calibrator were designed, fabricated, and tested
in a NASA/LaRC plasma arc facility. The objectives of the plasma arc tests
were:

(1) Determine individusl performance and mutual compatibility of the
various components under temperature, temperature gradients, and
pressure conditions more representative of maximum flight conditions,
than achievable in furnace tests.

(2) Provide arn indication of mission 1life capability of the various
component s.

(3) Establish feasibility of the temperature measurewent scheme.

(4) Demonstrate the feasibility of measuring pressure with sufficient
accuracy for the intended usage.

This section describee the design details, fabrication and test results.

The basic model configuration is shown in Figure 4-7 and the typical
thermocouple installation is shown in Figure 4-8.
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4.5.1 Design - As a result of the chemical compatibility tests and
thermal analyses, candidate materials combinations were assembled from which
three were selected for detail design and test. The candidates are summarized
in Table 4-4.

Systems A and C are the least expensive but also offer the lowest
temperature capability. These two differ only in the plug material. Systems
B and D which also differ only in plug material, provide a higher temperature
capability by replacing the nickel alloy parts in the higher temperature
region with coated refractories. System E has the highest temperature
capability, but is very expensive, and represents an “"overkill™ on the
temperature requirements. As such, it was decided to not pursue System E,
especially since Systems B and D would have a high probability of meeting the
requirements.

Of the remaining systems, it was decided to test Systems A and B to obtain
two tests of the coated refractory plug and obtain an evaluation of both super
alloy and refractory metal internal components. Although in retrospect,
System D might have been the better choice for the third model, it was decided
to try System C, because it appeared that the super alloy would be
satisfactory based upon furnace tests. Also, there was concern over the
ability to coat the union satisfactorily if it were refractory metal. System
B would provide this evaluation.

Therefore, Systems A, B and C were designed for plasma test. All
components were of the same design configuration with only material selection
producing the differences. Materials used are summarized in Table 4-5 with
each model identification number. Design details of each component are
included as Appendix B. The plug, union, nut, spacer and tube design are
ensentially the same as Concept 6, tested on the Phase I program. Minor
dimensional changes were made to accommodate the themmocouple mount, which
permitted the themmocouples to be inserted and staked in place before assembly
to the penetration assembly. The lockwasher was changed from the French lock
approach to a lockwire technique to avoid bending the coated refractory washer.
The two platinum rhodium themmocouplea, noted in Section 4.4, were included.

4.5.2 Fabrication - The RCC parts were fabricated and coated by Vought,
using the standard processes used in the fabrication of shuttle leading edge
component s.

The Stackpole 2020 plug was coated by Vought using a modified RCC coating
process.

YDNiCrAl stock was obtained from Special Metals Corporation, Allegheny
Ludlum. The initial material received had a higher hardness than desired (Re
38 - 46 vs. Rc 31 - 34) and was subject to cracking and chipping (due to
excessive porosity) during machining. When the material was replaced with
another lot of material, no machining difficulties were experienced, and parts
vere acceptable.

The iridium thermocouple mount was purchased from Engelhard.
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TABLE 4-4 - CANDIDATE MATERIAL COMBINATIONS

SYSTEM

COMPONENT A B c D E
PLUG Mb/Cb  Mb/Cb 2020 6r 2020 Gr 2020 Gr
SPACER RCC RCC RCC RCC RCC
UNION YONiCrAl  Mb/Cb YONiCPAl  Mb/Cb PLATINUM
WASHER YONiCrAl  Mb/Cb YONiCFA1  Mb/Cb IRIDIUM
T/C MOUNT YONiCFAl  IRIDIUM  YDNiCrAl  IRIDIUM  PLATINUM
NUT YONiCPAl  YDNiCrAl  YONICPAl  YDNiCPAl  YDNiCrAl
PRESS. TUBE INCO 702 INCO 702 INCO 702 INCO 702 INCO 702
LOCKWIRE PLATINM  IRIDIUMM  PLATINUM  IRIDIUM  PLATINUM
CHEM. BARRIER - . - - ~ IRIDIUM

THERMOCOUPLE PLATINUM PLATINUM PLATINUM PLATINUM PLATINUM
SHEATH

a

NOTES: A, B, C, & D ARE SAME DESIGN BUT E MUST USE IRIDIUM AS CHEMICAL
BARRIER BETWEEN UNION AND PLUG.

CANDIDATES ASSUME 2520F MAXIMUM NOSE CAP SURFACE TEMPERATURE.




On the basis of the superior performance exhibited by the coated
molybdenum in the chemical compatibility tests, it was decided to use
molybdenum, rather than columbium, for the refractory components. These parts
were procured from Hitemco, who supplied the buttons for the chemical
compatibility tests. However, during the 2100F - 1 hour pre-oxidation
conditioning cycle, it was discovered that the molybdenum parts oxidized
severely. When informed of this, Hitemco stated that the button material,
wvhich performed admirably, was from a differeant source and manufacturing
technique than that used for the component parts. They advised that coated
molybdenum performance could not be guaranteed, but coated columbium could bde
guaranteed to survive 2500F for 10 hours in a 1 atm. air enviromment.
Accordingly, the refractory parts were switched to C-103 columbium with the
R512E coating system, that was tested in the chemical compatibility progranm.

When the coated columbium parts were subjected to the oxidation
conditioning exposure, the only discrepancy found was a small pinhole
oxidation site at the base of a thread on the union. This was not exvected to
compromise the plasma test and the part was used.

Assembly of the models provided a minor problem, when the threads on the
nickel alloy unions had to be resized slightly to permit assembly. In
addition, since the plugs and RCC discs were manufactured at separate
facilities but at the same time, there was no opportunity to match fit the
parts before coating the RCC. This resulted in the plugs not fitting flush
with the RCC and a protruding plug step was obtained. This step varied
somewhat but was a maximum of 0.024 inch. Improvement can be realized through
closer tolerancing of the RCC countersink and possibly prefitting before
coating. (Prefitting using a standard coated columbium part was employed when
the production SEADS nose cap was machined.)

4.5.3 Plasma Test Data - The three plasma test models and one
calibrator model, consisting of an instrumented RCC disc, were tested in the
NASA/LaRC Plasma Arc Jet Facility "B". This is the same facility used for the
Phase I program tests. The target test condition was 2500F plug temperature
at 0.05 atm pressure. Target test duration was 5 hours. The test condition
was established, using a calibrator model, which had three tungsten rhenium
thermocouples attached to the aft side of the RCC disc. These were correlated
with three optical pyrometers, sensitive at 2.3 u wavelength. The test
models are defined in Table 4-5 along with a summary of exposure cycles and
exposure time.

4.5.3.1 Calibration Data - Two significant calibration runs were made:
one to compare the three optical pyrometers and the other to compare the
pyrometers against tungsten rhenium thermocouple output.

In the first test all three pyrometers were focused within 1/4 inch of the
same spot on an RCC disc. The following readings were obtained:

AT 0.05 ATM AT 0.10 ATM
PYRO ER TEMP, F AT, F TEHF, F AT. F
TRCON 174522 2540 Baseline 2685 Baseline
IRCON 174523 2585 45 2720 35
IRCON 144389 2625 85 2768 83
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There was, therefore, at least an 85F variation between optical pyrometers.

The second calibration involved focusing the optical pyrometers at each
thermocouple location. The thermocouples were mounted 90° apart at a radius
of 0.85" on the aft side of the 25-ply (0.325") disc in depressions about
0.06" deep. Thus, the thermocouples were installed about 0.26" aft of the
front face of the RCC disc. The following table lists results obtained at
0.05 atm and 690 sec. The pyrometer results, which are based on an emittance
of 0.9, are consistently and significantly higher than the thermocouple data.
Additional adjustment of pyrometer data to reflect spectral emittance
correction at 2.3 u (pyrometer sensitive vavelength) would produce even
greater disparity between the two measurement techniques.

PYROMETER THERMOCOUPLE 4 TEMP, F

No. Temp, F No. Temp, ¥ Uncorrected  Corrected¥ |
Uncorrected Corrected®

174522 2460 2460 2306 154 154
174523 2540 2495 2265 275 230
144389 2530 2445 3 2299 228 143

AVERAGE 2467 2290 176

¥Correction based on 0.05 ATM calibration run of Pyrometers assuming 174522 as
baseline.

Note that the maximum thermocouple scatter is only 41F and the maximum
scatter of corrected pyrometer data is 50F. The average difference between
pyrometer and thermocouple data is 176F, uncorrected for spectral emittance.
The expected temperature gradient across the 25-ply RCC would be only about
T4F if the analysis results of Figure 4-4 are used as a guide. Thus, if it is
assumed that the thermocouples are reading the correct temperature, then the
pyrometers read high by an average of 100F, using the IRCON 174522 as a
baseline value for initial pyrometer correction. The high pyrometer readings
are consistent with data reported in other tests of RCC material, where the
high readings were attributed to arc or gas radiation.

4.5.3.2 Model Data - The tungsten rhenium thermocouples were for
diagnostic purposes only and were expected to survive for no more than a few
cycles. They were used to determine the temperature distribution through the
model, as well as to provide backup inatrumentation for assessing optical
pyrometer accuracy. Data obtained for the first three cycles is provided in
Table 4-6, while typical data is plotted in Figure 4-9 to indicate probable
temperature gradients through the models.

Evaluation of the optical pyrometer data is subject to error, as noted
above, since multiple corrections are required in an attempt to match the
thermocouple data. For the plot of Figure 4-9 the pyrometer data was adjusted
by reducing raw readings, as follows:

IRCON 174522, -100F
IRCON 174523, -145F
IRCON 144389, -185F




TABLE 4-6 - TEMPERATURE DISTRIBUTION DATA

CYCLE L
MODEL LOCATION 1 2 3
(600 sec) (600 sec) (600 sec)
-9 Pyro 22 . 2679F 2635F v 2662F
Pyro 23 2725F 2749F 2785F
Pyro 89** 2775F 2750F 2760F
T/C Mount 20 2412F 2392F 2426F
T/C Mount 21 2409F 2392F 2423F
T/C RCC Disc 2440F 2450F 2405F
T/C Spacer 2420F 2419F 2370F
T/C Nut 2380F 2379F BAD
(497 sec)* (597 sec) (596 sec)
-10 Pyro 22 2345F 2625F 2640F
Pyro 23 2653F 2662F 2695F
Pyro 89 ** 2756F 2805F 2790F
T/C Mount 20 - - -
T/C Mount 21 2475F 2470F 2510F
T/C RCC Disc 2490F 2490F 2160F
T/C 3pacer 2470F 2475F 2510F
T/C Nut 2440F 2819F 2460F
(748 sec) (718 sec) (594 sec)
-N Pyro 23 2535F 2530F 2570F
Pyro 23 2580F 2480F 2610F
Pyro 89 ** 2780F 2780F 2660F
T/C Mount 20 2325F 2340F 2300F
T/C Mount 21 2370F 2380F 2350F
T/C RCC Disc 2390F " 2390F -
T/C Spacer 2360F 2360F 2275F
T/C Nut 2300F 2300F 2275F

* Slight water leak probably affected pyrometer readings.

** Focused on plug. Other pyrometers focused on RCC disc.




The resultant indicated temperatures were then averaged for plotting on Figure
4-9. The agreement with the expected surface temperature is not particularly
good. The distribution curves were drawn assuming the front face temperature
of the RCC is T4F higher than the back face in accordance with calculations,
Figure 4-4.

A typical temperature time history for the thermocouples is shown by
Figure 4-10. Maximum temperature is reached in approximately 600 seconds.
Each exposure cycle was targeted for 600 seconds, although in some instances
this varied because of equipment problems.

The -9 Model, consisting of a columbium plug and nickel union, was tested
first. This model was tested for only three cycles (30 minutes), since at the
conclusion of the third cycle the plug fell out. This failure was attributed
to melting of that portion of the YDNiCrAl union within the columbium plug.
The corrected pyrometer data would suggest that the specimen was overheated,
but the thermocouple data indicates that the union was heated to a maximum of
about 2450F based on the RCC aft side temperature. If more reliance is placed
on the thermocouples, then a YDNiCrAl union cannot be used at this temperature
condition. Small pitting was also in evidence at the periphery of the
columbium plug.

The -10 Model, which also used a columbium plug, but with columbium union,
was exposed to temperatures above that for the -9 Model for the first few
cycles, as indicated by Figure 4-9. The temperature was then lowered starting
with the fourth cycle, which is shown on Figure 4-11. This was done to avoid
overheating the columbium plug, which resulted in pitting on the -9 Model, and
to bring the temperatures more in line with the requirements. Unfortunately,
accurate temperature assessment of exposure conditions cannot be obtained,
since no thermocouples were operable from the fourth cycle on. Therefore,
reiiance must be placed upon the pyrometer results shown in Figure 4-11l.
Using the estimated temperature corrections for pyrometer results, the IRCON
174522 indicates an RCC temperature of about 2570F - 100F = 2470F from cycle 5
through cycle 27. Pyrometer IRCON 144389, on the other hand, indicates a
columbium plug temperature of 2700F - 185F = 2515F for cycle 5 through cycle
9, and then 2670F - 185F = 2485F through cycle 27. Pyrometer IRCON 174523 was
inoperable for these cycles. Data from the -11 Model, however, provides more
insight.

The -11 Model had operable platinum rhodium thermocouples for most of it's
exposure cycles, the data from which is shown on Figures 4-12 and 4-13. On
Figure 4-13 it 1is seen that the two platinum rhodium themmocouples
consistently read 50F difference and the average value is used to represent
the temperature of the thermocouple mount. Using cycles 5, 13, 16, 26, and 27
from the -11 Model indicates that the thermocouple mount of the -10 Model
probably operated between 2325F and 2345F for cycles 5 through 27. This puts
the temperature exposure near that plotted for the -11 Model on Figure 4-9.

Beyond the 27th cycle on the -10 Model, coating damage began to occur
around the edge of the columbium plug. This exposed the lower emittance base
material and may have caused the increase in surface temperature, as indicated
by pyrometer output rise, Figure 4-11. It was alao noted that the pressure
and plasma arc power were increased for these three cycles and could have
caused the coating failure and increased temperature. This is discussed later.
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In summary, it is concluded that the -10 Model was exposed to an RCC
surface temperature greater than 2550F for three cycles and greater than 2450F
for an additional 24 cycles before the coating on the columbium plug began to
faile It is significant that, when coating failure began on the 28th cycle,
the model survived an additional 20 minutes of testing before degradation of
the columbium plug became serious enough to terminate testing. Total test
time was 4.9 hours.

The -11 Model, which employed a graphite plug and YDNiCrAl union, was
purposely targeted to lower temperature conditions than the -9 Model to avoid
overheating the nickel alloy union. Temperature data is plotted in Figures
4-12 and 4-13. Although exposure conditions were variable, for the most part
the thermocouple mount operated around 2350F, as determined by the platinum
rhodium thermocouple data on Figure 4-13. The distribution of temperature was
about like that shown in Figure 4-9. Of the 34 exposure cycles there were 6
that had sufficient water leaks in the plasma arc to cause low model
temperatures. Apparently, the models are insensitive to this water "quench",
as there was no evidence of thermal shock cracking on the specimens. This
model was exposed for the targeted 5 hours in 34 cycles.

Unlike the -10 Model, where there was no output from the platinum rhodium
thermocouples after 3 cycles, one of those on the -11 Model operated full
term, while the other was intermittantly in and out through 27 cycles. The
nature of failure of the thermocouples or the exact location is unknown.

4.5.3.3 Pressure Data - Target pressure conditions in the test was 0.05
atm, which is 38.0 mm Hg. For the three cycles on the -9 Model the measured
pressure from the model pressure tube at the end of each exposure varied
between 38.7 and 39.1 mm Hg.

For the -10 Model the first cycle pressure was 40.6 mm Hg. Cycles 2
through 27 resulted in a variation from 37.1 to 39.0 mm Hg. For cycles 28, 29
and 30, when the temperature climbed dramatically, the measured pressure rose
to between 55.1 and 55.6 mm Hg or approximately 45% higher than target. For
these last three cycles it was noticed that the plasma arc facility current
wvas over 20% higher than for the immediately preceeding runs. It is possible
then that the failure of the coating on the columbium plug could have been
aggravated by higher heating and pressure enviromments applied to the model.

Exclusive of those tests, which experienced severe water leaks, the -11
Model measured a pressure variation between 38.0 and 39.6 mm Hg.

In general, then, it was concluded that the model pressure measurement
system did indeed function satisfactorily throughout the tests on all three
models.

Selected test runs were examined in detail in an effort to correlate
pressure or temperature transients observed during the run. No real
correlation was found between fluctuations observed in temperature, pressure,
arc current or arc voltage, except for that cited above on the last three runs
of the -10 Model.

Pressure response was also examired and it was found that the pressure
rose to full steady state value within 10 seconds.




It is concluded that the pressure measurement capability and response,
even with the lack of a perfect pressure seal at the tube connection, is
adequate for the task.

4.5.4 Test Evaluation - This section describes the physical results of
the plasma test and draws conclusions relative ¢to the three model
configurations tested. The materials makeup of each model is summariged in
Table 4-5.

-9 Model - This model was tested for 30 minutes in three cycles. At the
conclusion of test the columbium plug fell out, revealing that the nickel
alloy union had melted. In addition, the plug suffered pitting on the exposed
surface near the edge of the countersink. The pitting did not originate at
the radiused edge but propagated to it. The same damage occurred on the -11
Model but right at the corner. All other components remained intact with no
evidence of damage. The nickel nut was removed quite easily from the nickel
union indicating no self bonding. In addition, there was no evidence of
chemical reaction between the nickel, columbium, or coated RCC.

Photographs of the model, following test are included as Figures 4-14,
4'15 and 4-160

It was concluded that the melting of the nickel alloy union was the result
of overheating, perhaps due to higher temperatures than expected on the end of
the union, rather than a chemical reaction. Therefore, a nickel alloy union
cannot be used successfully in the maximum heating region of the nose cap,
but, based upon results from the -11 Model, could find application in the
cooler regions.

The pitting on the face of the columbium plug was experienced on both the
-9 and -10 Models, and represents a marginal condition for this coating
gystem. Since the pitting occurred at the same locale on both models, some
improvement would result from increased corner radius of the countersink
head. This would reduce local temperature and/or improve coatability.

=10 Model - This model, which had both a columbium plug and a columbium
union, was expected to provide higher temperature capability than the -9
Model. However, in view of the surface pitting experienced by the -9 Model,
the exposure temperature was reduced by about 100F after the first three
cycles in order to avoid early pitting and provide data on longer term
exposure. The RCC surface temperature for most of the run time is estimated
at about 2470F, reference Figure 4-11 Pyrometer #22 with 100F correction.
This is 30F lower than the target condition.

This model survived 30 test cycles for a cumulative exposure of 4.9
hours. It was disassembled completely without the aid of wrenches after both
2-hours and 3-hours exposure, but at 4-hours, the union could not be unscrewed
from the plug with finger pressure. And at the conclusion of test,
disassembly could not be accomplished, even by strenuous urging with
wrenches. At this point, however, the nickel nut was 8still readily removed
from the columbium union.

The inability to separate the plug and union after 4-hours exposure was
not unexpected and was the reason for using a loose fit on the threads and
assembling finger tight.




After 2-hours exposure no material degradation or chemical reaction was
observed on any part.

The condition of the model after 3-hcurs of test is shown in Figures 4-17
through 4-19. FNote that pitting has begun at the cormer of the plug head,
but, as noted below, propagation of the failure is rather slow, providing a
degree of failsafe operation. None of the other parts showed any damage or
chemical reaction with the exception of the welded washer to the pressure
tube. In all models this electror heam welded joint failed, proving to be
unsatisfactory. A standard flared iube end would correct this problem by
eliminating the washer completely.

After 4-hours exposure, the model appearance was as shown in Figures 4-20
and 4-21. Note that the initial coating failure on the plug has not
progressed greatly after the additional hour of exposure, but another pit has
developed. At this point, only the nickel nut could be disassembled from the
union. However, no other evidence of failure or chemical reaction could be
observed on the assembly.

After the 27th cycle the columbium plug began to degrade rapidly as
evidenced by Pyrometer 89 response, Figure 4-11. It is observed that as more
bare columbium became exposed with it's 1low emittance, the temperature
progressively rose higher until testing was temminated after the 30th cycle.
The condition of the model at the conclusion of testing with 4.9 hours of
exposure is shown in Figures 4-22 and 4-23. While the columbium plug is
severely oxidized, the oxidation rate appears to be such that mission safety
would not be an issue.

Only the nickel nut and pressure tube could be disassembled from the
model. Visual inspection could reveal no areas on the nut, union, pressure
tube, lockwasher, themmocouple mount, or thermocouples where melt, chemical
reaction, or coating degradation were in evidence. However, the union and
plug could not be disassembled even with hard wrenching. This eventually
resulted in bending the washer and chipping the coating on both the washer and
union.

This assembly had to be sectioned for examination. Photographs of
sectioned pieces are shown in Figure 4-24. No evidence of coating failure or
subsurface oxidation were found. Of particular significance is that the plug
and union section, shown in the lower photo of Figure 4-24, were easily
separated after sectionirg. This indicates that there apparently was no
diffusion bonding between the two parts. It was believed that the reason for
being unable to disassemble the plug and union was not the result of
self-bonding, but probably due to scale formation which tended to lock-up the
threads. The scale formation was discovered in the chemical compatibility
tests discussed previously. If this was indeed the case, then it was believed
possible to extend the operational 1life of columbium parts by periodic
disassembly and removal of loose scale. Actually, anti-seize tests did not
bear this out, and an anti-seize coating was developed to enhance disassembly,
Section 6.3.

-11 Model - This model utilized a coated graphite plug and a nickel alloy
union. 1t was exposed to temperature conditions approximately 5OF lower than
targeted to avoid premature failure of the nickel &lloy union. This permitted
teasting for the full 5-hours desired.




There was no periodic disasseably of this model and at the conclusion of
test only the nut and pressure tube could be removed. The union and plug were
bound together tightly, such that the plug had to be fractured to separate the
two. Post test photographs of this model are provided as Figures 4-25 through
4"270 .

In Pigures 4-25 and 4-26 the assembly looks as good as the pretest
condition. However, upon disassembly it is seen in Figure 4-27 that the
nickel alloy union suffered some melt damage. The "blob" of material
projecting from the end of the union was analysed and found to be the same as
the union material. In addition this material and the union itself on the
plug end were highly porous. It is not known when this "blob” formed, nor
vhether it was purely an over-temperature condition or a result of a cheaical
reaction promoted by the graphite coating. Interestingly, the protuberance
did not take the shape of the cavity in the graphite plug, and pressure from
the model pressure measurement system during the last cycle was consistent
with values measured throughout the test program. The formation of this
protuberance thus remains a mystery.

The graphite plug was examined visually for evidence of subsurface attack;
that is, graphite oxidation at the coating/graphite interface. There was no
evidence of any significant subsurface oxidation, although there probably was
a modest amount, since some of the fractured surfaces tended to undercut the
coating slightly. However, there were uno pockets of oxidation, and the
coating was firmly attached to the graphits.

The coating thickness on the plug was evaluated by the burnout technique,
wherein the sectioned material is exposed in an air furnace to oxidigze the
graphite away from the coating. This leaves the coating, as a shell, that can
be readily measured. This operation revealed a dense outer "skin" roughly 5 -
10 mils thick and a total coating thickness that varied between 25 mils in the
internal cavity and threaded region, to 35 mils on the outer curface of the
shank, and 45 mils on the surface exposed to the plasma enviromme=t. These
thicknesses are in accordance with the desired 20 mil minimum.

Note in Figure 4-25 that the pressure port hole and cavity have remained
intact, indicating that the design modifications made to this graphite part
has resulted in good coatings. This is in contrast to the Phase I design,
where the pressure port hole did not coat sufficiently thick, resulting in
oxidation in the hole.

4.6 Pressure Tubes Routing Concept

4.6.1 Design Concepts - There were fourteen pressure ports distributed
in the nose cap in initial locations shown by Figure 4-28. Each location had
a 5/32 inch diameter pressure tube, which was to ultimately increase in
diameter to 3/8 inch and pass through the nose cap support bulkhead to
pressure transducers located on the aft side of the bulkhead. Tube runs were
to be maintained as short as possible for best pressure response at the higher
altitudes, and the transition to the larger diameter tube was to be made as
quickly as possible, but preferably the small tubes were not to be over one
and a half feet in length.

The primary considerations involved in developing and evaluating concepts
for tube routing included:

34




The dynamic vibration loads imposed from the nose cap and bulkhead
during launch and transcnic flight, as well as the acoustic noise
enviromment imposed on and within the nose cap cavity during this
period.

The high temperature inside the nose cap cavity during entry which
was in the 2300 - 2500F range, and the need to limit the aluminum
support bulkhead temperature to an acceptable level as the tubes pass
through the bulkhead.

The relative deflection btetween nose cap and the nose cap support
bulkhead under the action of the boost pressures.

(4) Acceptable locations on the support bulkhead to provide tube pass
through and tube support. ‘

(5) Ability to 1install the system initially and permit periodic
replacement of components in the event that the SEADS would not have
a mission life capability equivalent to ti. nose cap.

(6) Minim zing loads introduced into the nose cap from SEADS.

Three basic approaches were examined qualitatively and are illustrated in
Figures 4-29, 4-30 and 4-31. They are:

(1) Route each tube individually from the nose cap to the bulkhead.

(2) Gang groups of tubes together for mutual support and route to the
bulkhead.

(3) Provide a stiff support structure mounted off the bulkhead to which
groups of tubes are routed for support.

Individual tube routing as illustrated in Figure 4-29 with or without
conduits leads to a flexible tube system, not likely to be compatible with
vibration and acoustic noise requirements unless the conduit is overly large.
Moreover, each tube requires individual insulation and individual mounting
provisions at the bulkhead. The expected flexibility and complications with
fourteen insulation blankets and mounting brackets make this approach
unattractive.

Ganging tubes together, as shown in Figure 4-30, provides for mutual
support to more efficiently stiffen the system, as compared to individual tube
routing. Only one insulation blanket for each group of ganged tubes is
required. However, unless each tube diameter is increased significantly above
the 3/8 inch required, the system was still expected to be too flexible for
the long tube runs to meet vibration requirements. In addition, methods of
tieing the tubes together to produce effective mutual support could become
overly complicated. These considerations led to the support tube concept,
which was considered to be the best approach.

The support {ube concept, pictured in Figure 4-31, gives the opportunity
to provide the stiffness required to meet vibration requirements. Two support
tubes are employed, each collecting seven pressure tubes. Fortunately, there
are locations on the bulkhead that allow the passage of seven tubes in a




localized &rea as well as to permit the large footprint of the fitting that
ties the support tube to the bulkhead. One insulation blanket is required for
each support tube. The length of the support tubes and the location of their
nose cap ends can be adjusted to optimise the unsupported lengths of the 5/32
inch diameter tubes. Further, the system offers the flexihility of
transitioning from the 5/32 inch diameter to the 3/8 inch diameter tubes at
any location between the nose cap and support tubes to balance the design of
the small diameter tubes between the vibration and static deflection
requirements. For these reasons this concept was selected for further
analysis, which, as described later indicated feasibility of the support tube
concept.

4.6.1.1 Support Tube Concept Options - The support tube approach (Figure
4-32) has several options that were qualitatively evaluated as discussed below.

The 3/8 inch diameter tubes may be routed either internally or externally
to the support tube. External routing would produce lower stiffness for a
given external diameter than for the internally routed tubes and it was felt
that mounting the pressure tubes external to the support tube may lead to a
more complicated overall design. Although the external approach would
probably permit easier replacement of individual tubes in service, it was felt
that damage to the 3/8 inch diameter tubes was highly unlikely based on the
design envisioned. The weak spot of this system should be the 5/32 inch
diameter tubes. Therefore, easy replacement of the larger tubes was no real
advantage. Because of the greater stiffness offered by internal routing, the
internal approach was selected. The concept is shown on Figure 4-32.

The support tube and the pressure tubes will operate at different
temperatures and experience different heating rates. Therefore, the pressure
tubes should be anchored at one end and allowed to expand at the other end of
the support tube. Since the tubes at the bulkhead end are mounted in an
insulator block to protect the bulkhead against overhaating, it was considered
better to permit the tubes to expand freely at the nose cap end to avoid
possible cocking and subsequent jamming of the insulator block on the support
tube if it was designed to slide.

Because of possible excitation of the 3/8 inch diameter tube inside the
support tube, bulkheads were added to provide periodic support to the pressure
tubes. The bulkheads also add structural and geomeiric stability to the
support tube skin, which was envisioned a# a rolled configuration, perhaps
0.010 inch thick.

As noted previously, the internal temperature enviromment of the nose cap
vas in the 2300 - 2500F range, yet the support bulkhead must not exceed 350F.
Therefore, an insulation blanket covers the tube. Insulation is also added at
the end of the tube that views the nose cap. Tris produces a substantial
temperature drop at the hot end of the tube. However, both the insulation
blanket and hot end insulation were not expected to be sufficient for limiting
the bulkhead temperature rise. Therefore, an additional tubular insulator,
made of polyimide fiberglass, was added at the bulkhead end of the support
tube. Similarly, a polyimide block is added at the bulkhead end to provide
thermal insulation from the 3/8 inch diameter pressure tubes. The thermal
adequacy of this design is c~vered in Section 4.6.2.

4.6.1.2 Support Tube Locations - The nose cap support bulkhead was
examined for possible locations acceptable “or mounting the support tube and
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permit pass-through of the seven pressure tubes for each support tube. This
examination revealed that the region between nose cap support fittings numbers
2 and 3 and 9 and 10 would be the most optimum acceptable location for the
penetration array. This required canting the support tubes to minimize and
balance the tube runs of the 5/32 inch diameter tubes. This is shown in
Figure 4-33. For this particular pressure port array the support tube
arrangement is symmetrical about the vertical centerline, but for another
array pattern the cant angle of each tube can be optimigzed for the pressure
tubes each collects.

4.,6,2 Thermai Analysis - The support tube was thermally analyzed to
show feasibility ol the 1insulation design to protect the support bulkhead;
however, no attempt was made to optimisze the design. Preliminary estimates
established the insulation blanket thickness at 2.5 inches and the length of
the polyimide fiberglass tube. Finite element analyses were then conducted to
evaluate the effectiveness of the design, reference 4. '

Entry trajectory 14414.1C was used in this analysis, which i3 slightly
hotter than trajectory 14414.1. Insulation surface temperatures were
specified with time and were determined from the baseline nose cap themmal
analysis. Boundary temperatures are shown in Figure 4-34. The bulkhead
temperature limit was set at 350F and the polyimide fiberglass temperature was
limited to 650F. Two different insulation materials were analyzed - 12
1b/ft Dynaflex, and 9 1b/ft> HRSI.

Analysis was conducted using the Southwest Research Institute themmal
analyzer routine with the model pictured in Figure 4-35. For simplicity the
tube was assumed normmal to the bulkhead plane with a length equal to the
shortest dimension of the true canted tube. Heating was applied
axi-symmetrically. The seven pressure tubes were combined into one, but,
because of radiation view factors of the true individual tubes, only 75% of
their surface area was allowed to participate in radiation heat %{ransfer.

Temperature time histories of selected nodes are given in Figures 4-%6 and
4-37 to 1illustrate the differences in results for the two insulation
materials. HRSI shows better efficiency, but for either material the bulkhead
temperature peaked below the 350F 1imit. Polyimide fiberglass maximum
temperature is examined further in Figure 4-38 to show the value at the hot
end of the tube. Note that with HRSI the temperature is within the 650F
limit, but with Dynaflex the limit is exceeded by only 30F, indicating a small
adjustment to the design would be required if Dynaflex was to be used. The
effectiveness of the polyimide fiberglass in reducing heat conduction to the
bulkhead is also indicated on Figure 4-38 by the temperature gradient along
the polyimide fiberglass tube.

Temperatures at the nose cap end of the support tube are shosn in Figuro
4-39 at time cuts representative of marimum values achieved for the nodes of
interest. Because of the modeling technique used, the temperature of node 3
may be understated, but the effectiveness of the insulation within the support
tube is indicated by the temperature drop between ncdes 2 and 5. This
insulation primarily acts as a radiation barrier, but has some heat sink
effect, as well. Note that the temperature gradient along the pressure tube
is rather small, as indicated by a comparison of nodes 4, 5 and 6. This small
gradient also exists in the support tube and indicates that heat transfer to
the polyimide fiberglass and the bulkhead is primarily due to radial heat
conduction rather than conduction down the length of the tube. This is
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attributed to the radiation heat blockage afforded by the insulation in the
nose cap end of the support tube.

In summary, the following results and conclusions were obtained from the
thermmal analysis:

(1) The support tube concept is thermally feasible.

(2) Blockage of radiation heating by insulation at the nose cap end of
the support tube is very effective in producing a themally efficient
design.

(3) Heat conduction is primarily radial once the blockage noted in (2) is
employed.

(4) It may be feasible to eliminate the polyimide fiberglass tube by
increasing the thickness of the insulatio™ blanket.

4.7 Dynamic Analysis

One of the most critical aspects of the SEADS design is the ability of the
small diameter pressure tubes to withstand the dynamic environment, yet be
flexible enough to meet static and thermal deflections. It was clear from
static analysis that each of the tubes would require bends or a coil or 1loop
to maintain tube stresses to reasonable levels, and to avoid introducing
significant loading into the penetration assembly or the nose cap. A dynamic
analysis, references 2 and 5, was conducted to determine the feasibility of
the support tube concept and to establish guidelines for tube configurations
that would meet the vibration requirements.

One of the support tubes and all seven of it's pressure tubes were modeled
and analyzed using Vought Dynamics' PAS System. A 922 degree-of-freedom
finite element model was used to describe the support tube and pressure tubes
numbers 2, 4, 5, 9, 10, 12 and 14 (Figure 4-28). This was reduced to 168
degrees-of-freedom by static condensation and imposition of constraints at the
nose cap and support bulkhead. Twenty-four elastic modes were used in the
frequency response analysis.

The support tube analyzed was 2 3/4 inch diameter, 0.012 inch thick
Inconel skin stepped up to 0.025 inch effective thickness at the bdase to
represent the region with the polyimide fiberglass. The 5/32 inch diameter
pressure tubes were assumed to have 0.015 inch wall thickness, while the 3/8
inch dismeter tubes were 0.020 inck wall thickness. Modal damping was assumed
to be 2 of critical. Twelve pressure tube configurations were evaluated.

For this feasibility analysis, a maximum of ZGZ/Hz vibration level, was
simultaneously applied and correlated in all three axes at both the bulkhead
and at the nose cap end of the system. Realistically, the enviromment at the
bulkhead should have lower levels inplane than those normal to the bulkhead
veb. Therefore, the application of this environment in all three axes at the
base of the support tube produces larger responses at the nose cap end of the
tube and tends to offset the reduced level at the nose cap skin, which was
30G2/Hz at the time the study was zonducted (reference 2). Significantly
reduced design and test levels were ultimately used for final design as shown
by the test spectrum on Table 9-1.
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While all tubes were analyzed together, evaluation to determine acceptable
configurations was conducted by changing only one tube at a time. These
individual changes were found to effect the response of the other tubes of the
array and further adjustments were sometimes required. Acceptable tube
configurations are pictured in Figure 4-40. Tube number identifications are
referenced to Figure 4-28.

A summary of the maximum RMS loads obtained on the support tube and
pressure tubes is listed in Table 4-7. Maximum bending stresses, resulting
from these loads, are as follows:

Support Tube = 18380 psi
Pressure Tube at Nose Cap (5/32 in. dia.) = 19070 psi
Pressure Tube at Bulkhead (3/8 in. dia.) = 2770 psi

In the process of optimizing and evaluating preliminary design
configurations, trend or sensitivity analyses were conducted. Results are
summarized in Tables 4-8 and 4-9.

The influence of support tube variations upon support tube stress and upon
the average of stresses of the seven 5/32 inch diameter tubes at both the nose
cap end and the coupler end (connection to the 3/8 inch diameter tube) are
shown in Table 4-8. Note that the inclusion of a "vibration isolator" between
the support tube and bulknead produces a reduction of support tube stress, but
it has a significant adverse effect on pressure tube stresses. Therefore, the
vibration isolator was eliminated from further consideration.

Results also show that stiffening the support tube produces modest stress
change to the support tube, but, again, can have an adverse effect upon the
stresses of the pressure tubes, producing as much as a 60% increase for the
case examined, where the diameter is increased. If the thickness of the
suppcrt tube is decreased, support tube stress increases almost inversely
proportional to the thickness decrease, but the pressure tubes stress
increases only modestly. If the thickness of the base of the support tube is
increased, while the basic thickness is decreased, support tube stresses
decrease, but pressure tube stresses go up.

The conclusion reached from this study ia that the operating stresses for
both the support tube and the pressure tubes are sensitive to support tube
geometry variations and the system must be tuned for optimum performance. If
changes are made the system must be retuned. Of course the low operating
stresses of the system (less than 20000 psi) indicates that moderate increases
in stress can be tolerated without becoming critical.

Sensitivity analyses for selected pressure tubes are summarized in Table
4-9. It is apparent that a change in an individual pressure tube has a
finite, but small, influence on support tube stress, unless the change is
extreme. The results show that in general, once a pressure tube is optimized,
adding or deleting loops produces adverse stress changes. In particular,
overly long or extremelv short, stiff tubes result in high stresses. However,
there are changes that can be made without seriously degrading the system.
Typical is the 3 inch length increase to tube #10 with a resultant decrease of
stress or the addition of a loop to tube #14 with only 22% stress increase.
Thus, while there is a requirement to design tune each tube, there remains a
degree of flexibility for deviations that might occur during mock-up of the
tubes or during production installation.
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TABLE 4-7

DYNAMIC ANALYSIS RESULTS RMS LOADS

Location

Support
Tube

Base at
Bulkhead

Pressure
Tubes
3/8" dia.

5/32% dia.

Bulkhead

End of
Support
Tube

3/8" to 5/32*
Coupler

Nose Cap
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A preliminary assessment of the expected fatigue life of the pressure
tubes was made using a technique that expresses the RMS stress from random
vibration into an equivalent sinusoidal stress. Then, using the highest of
the range of significant response frequencies, the time to failure was
computed from Inconel 718 fatigue data, since Inconel 702 data was not
available. Time to failure for the 19.07 KSI RMS stress level was 67 minutes,
4.8 times the requirement for the maximum enviromment. The indication is that
the tubes would survive 100 missions.

As a result of the dynamic analyses to evaluate feasibility, the following
conclusions and guidelines are offered:

(1) The support tube concept is feasible.

(2) The system must be tuned to obtain frequency separation between the
support tube and pressure tubes, and to optimize the design.

(3) A vibration isolator at the mounting base of the support tube should
not be used.

(4) The small diameter pressure tube length should generally fall in the
range 14 - 18 inches.

(5) A stiff support tube base in the region of the fiberglass should
enhance an optimized system.

(6) Simple bends in the pressure tubes are best, but if loops are
required to meet length/stiffneas requirements they should be located
at the nose cap end of the tube. This guideline presumes the
response at the end of the support tube is greater than the
environment at nose cap. If this condition doesn't exist then the
loops in the pressure tubes should be near the support tube.

4.8 Structural Analysis

Preliminary structural analyses were conducted on system components and
are summarized in this section.

4.8.1 Support Tube - The support tube was statically analyzed for an
arbitrary 200 pound ultimate load applied at the free end. This loading was
intended to cover the possibility of a man supporting his weight on the
support tube, while leaning into the nose cap cavity, installing or replacing
pressure tubes. This analysis was conducted primarily to establish rough
sizing for the dynamics analysis and to obtain consistent strength/stiffness
of the support tube and its' mounting provisions.

The Inconel support tube was analyzed for buckling where it attaches to
the polyimide fiberglass tubes. Results for two assumed tube thicknesses are
as follows:

all Thickness Applied Stress Allowable Stress Margin of Safety
t, in. fo, pei F. , psi

0.010 47200 53400 0.13
0.012 39330 60000* 0.53
¥Buckling allowable limited to yield stress.




A similar analysis to evaluate stability of the polyimide fiberglase
section yielded a thickneass requirement of only 0.02 inch. However, in order
to maintain uniform stiffness or prevent a "soft" region at the base of the
support tube, the polyimide fiberglass was sized to produce equivalent axial
stiffness %o the Inconel section. Thus, for 0.010 inch thick Inconel the
fiberglass thickness should be 0.12 inch and would increase to 0.14 inch for a
0.012 inch thick Inconel tube.

Attachment of the Inconel and fiberglass is by Monel rivets to survive the

600F temperature during entry, when loads are very small. Two rows of rivets
are required for strength continuity.

Because of the insulative capability of the polyimide fiberglass, the
bulkhead attach fitting and the rivets, connecting to the fiberglass, are
aluminum. The fittirg collar is 0.050 inch thick, sized to develop rivet
strength in bearing in the 6061-T6 material. The flange of the fitting was
gized for simple bending and resulted in a 0.20 inch thickness requirement.
The bolts tieing the fitting to the bulkhead have a non-uniform pattern to
permit the bolts to either go through the thiclkened portion of bulkhead wed
intersections, or to miss the webs entirely. Analysis of bolt tension with
some prying on the bolt heads, resulted in a requirement for 3/16 inch
diameter bolts.

It should be reiterated that the structural sizing conducted was to assure
realistic and uniform design of the support tube and no attempt was made to
optimize or perform rigorous analysis. The resultant design was released as
Vought drawing 221GT4069.

4.8.2 Pressure Tubes - A static analysis was conducted on the longest
and shortest tube in the array to detemmine the magnitude of tube stresses and
loads imposed on the penetration assemblies. Both forced deflection and
thermal deflections were evaluated. Forced deflections are imposed from
applied mirloads to the nose cap, which in turn loads and deflects the support
bulkhead. As the bulkhead deflects the surface on which the support tube is
mounted rotates, causing the end of the support tube to swing. This vroduces
a net movement between the support tube end and nose cap end of each pressure
tube. Maximum forced deflections occurred during a descent phase, when the
tubes were essentially at room temperature. Maximum thermal deflections
occurred during entry when air loads were small. This analysis proved highly
conservative when deflections were reduced to insignificant values, but is
included here for completeness.

Maximum forced deflections at the time period analyzed (February 1977)
occurred for a conditiun designated AT369, which was a descent condition at
2000 ft. altitude. Bulkhead deflecticns at the nose cap attach fittings and
nose cap deflections were obtained from the baseline nose cap analysis.
Vertical and side deflections were insignificant but the aft limit load
deflections were:

Nose Cap = 0.183 in.
Fittings 2 and 10 = 0.177 in.} Avg. 0.162 in.
Fittings 3 and 9 = 0.148 in.

Since the support tubes attach between fittings 2 and 3, and 9 and 10, the
average of these deflections was used to calculate tube rotation. The motions
used in the deflection analysis are shown as follows:
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Using a full scale layout, it was found that the forced deflection for the
longest tube was 0.28 inch, while that for the shortest would be 0.25 inch,
the difference being due to their 1location on the nose cap. For this
preliminary evaluation the long tube was actually analyzed for O.3 inch
deflection. As noted in the picture above, the outer periphery of the
bulkhead was assumed fixed. A deflecting bulkhead boundary was also examined
based upon spring rates supplied by Rockwell. This resulted in a 15%
reduction in the rotation of the support tube, but the deflections noted above
were used because they were documented.

The configurations of the tubes analyzed and the resultant end loads and
maximum moments obtained are shown in Figure 4-41. It was found that the long
tube produced the highest loads on the penetration and experienced the highest
tube bending moments.

For a 5/32 inch diameter Inconel 702 tube with wall thickness of 0.010
inch and a modulus of elasticity, E, of 31.5 x 106 psi, the following loads
and stresses are obtained for the long and short tubes:

LONG TUBE SHORT TUBE
Shear Load, H, 1lb. 9.3 4.8
Axial Load, V, 1lb. 2.4 0.6
End Moment, M, in.-lb. 19.0 8.6
Max. Moment, in.-1b. 19.0 11.3
Bending Stress, psi 120, 7G0 71,765
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These computed stresses are rather high and exceed the yield strength of
precipitation heat treated material, which is 60,000 psi (MIL-HDBK-5C).
However, there are some offsetting factors as enumerated below.

(1) The elongation of the material is in excess of 30% (MIL-HDBK-5C), and
vill permit the tubes to be repeatedly flexed beyond yield.

(2) As the material is flexed beyond yield, the stiffness reduces and the
actual stresses obtained will be somewhat lower then those computed.

Later design loads, and hence bulkhead deflections, are only 56% of
those used in this analysis. Therefore, calculated stresses will be
reduced accordingly. (Final design studies produced an insignificant
forced deflection on the tubes, making coated columbium tubes
feasible.)

Work herdening due to flexing at ambient temperature shoﬁld be offset
to a degree by the intermediate high temperature conditioning during
entry.

The analysis assumed complete fixity at the tube ends. This is most
likely not the true condition.

The long tube stresses could be made to approach those of the short
tube by extending the length of the 3/8 inch diameter tube and adding
a loop in the 5/32 inch diameter tube. That is, design optimization
can be conducted.

The thermal expansion condition was examined for the long tube assuming a
temperature rise of 2400F for the 5/32 inch diameter tubes and an average 60OF
rise for the 3/8 inch diameter tubes. Referring to Figure 4-41, this results
in an effective deflection in the V direction of 0.21 inch and an effective
deflection in the H direction of 0.12 inch. Computed end loads are:

H = 0.0140 EI
V = 0.00404 EI
M = 0.0264 EI

At 2400F the modulus of elasticity, E, is probably only 10 - 20% of the room
temperature value (data not available at this temperature), so that induced
loads are roughly only one-tenth of those computed for the room te.perature
condition. The number of missions that the tubes can survive under these
conditions can only be determined by test.

4.8.3 Penetration Assembly - The tube end loads applied to the
penetration assembly are very low, being a maximum of 19 in.-1b. bending, 9.3
1b. shear and 2.4 1b. axial compression, assuming no load reduction for the
tube stress exceeding yield. An analysis of the strength capability of the
penetration assembly was conducted for these loads. It was found that shear
strength of the threads in the graphite plug produced the minimum strength
margin. For a shear allowable of 1000 psi the factor of safety was calculated
to be greater than 5. Thus, it appears that there is adequate strength
capability in the penetration assembly.




4.9 Summary and Conclusions

4.9.1 Overall Design Concept - By structural, dynamic and themmal
analysis it was shown that the basic design concept, involving the support
tubes, small pressure tubes and the pressure port assembly, is feasible.
Design refinements can improve the concept, particularly with respect to amall
pressure tubes configurations.

4.9.2 Pressure Port Assembly - Both coated graphite and coated
columbium may be use or e plug with an unknown mission 1life. Improved
life of the columbium plug would be possible by using a larger edge radius on
the countersink head. The oxidation rate on columbium appears sufficiently

low as to provide a measure of flight safety in the event of localiged coating
failure.

The nickel alloy, YDNiCrAl, cannot be used safely for the union regions
where the nose cap surface temperature will operate in excess of about 2400F.
However, a coated columbium unior will successfully operate at the design
temperature.

It appeared that nickel alloys can be used for the pressure tubes, the
attaching nut, and the lockwasher for lower design temperature regions. The
ase of coated columbium for these parts provide a temperature margin of
safety, and a platinum rhodium alloy should be a viable alternate for the
small pressure tubes, when an iridium chemical barrier is used to provide
protection from silicide coatings.

Platinum rhodium thermocouples produced varying degrees of success, but
appear to remain the best candidate. Electrical grocunding of the thermocouple
sheath solved initial problems, when no usable data was obtained from these
thermocouples. The 10 mil wire size thermocouple produced response as good as
the 5 mil wire configuration, and due tc increased ruggedness, is the
preferred configuration.

Thermocouple mounts of either iridium or nickel alloy may be used and
depenis in part on thermal margin desired. Iridium is roughly an order of
magnitude more expensive than the nickel alloy. It is probably feasible to
design a coated columbium thermocouple mount, but thermocouples would have to
be bonded in place, since staking with the coating would be unacceptable.

In summary, the ingredients for producing a sound system were demonstrated
by analysis or test. It remained to select the best materials combinations,
upgrade the design and analyses, and conduct additional tests to verify the
analyses and establish the expected missioa life of the system.




LALAL 1 LR L A LU L S

LUS I |

L A

I

5.0 NOSE CAP RELATED ANALYSES

Having demonstrated the fundamental feasibility of the SEADS thermo/
structural design by analysis and/or teet, it became timely to perform more
detailed analyses to assure that each facet of the system was adequately
addressed and quantitigzed, where practical.

The nose cap became the target for detailed analyses to answer concerns
expressed by NASA and Rockwell. In particular the questions posed, and
associated analyses, summarized in this section, are as follows:

(1) With the introduction of fourteen penetration holes in the nose cap,
how do they, or any 1local stiffening required, affect nose cap
strength and buckling?

(2) What effect does a non-circular penetration hole in the nose cap have
upon local stresses? (This item is taken out of chronological

sequence, since it logically should he combined with nose cap
analyses.)

(3) Would a more sophisticated thermal analysis of the penetration
assemblies to account for cross-radiation and unsymmetrical heating

produce possible thermal stress concerns for either the nose cap or
the penetration assemblies?

(4) Does the presence of the two insulated support posts in the nose cap
block cross-radiation to the extent that thermal stress in the nose
cap is significantly affected?

Each of these items are covered in this section of the report.

5.1 Structural Analysis of the Nose Cap

For the Phase II program, discussed in Section 4.0. the test program and
thermal analyses were based upon thickening the noee cap around each
penetration assembly, such that the local thickness was 25 plies as opposed to
the basic nose cap 19-ply dome construction. The reasons for this were (1)
to restore local strength and stiffening, where the material was cut out for
the penetration assembly, and (2) to provide sufficient thickness to permit
countersinking for the relatively large diameter ports. The local stiffening

was to be accomplished by tapered circular ply doublers, and was established
by engineering judgement.

The finite element analyses conducted, reference 6, and described herein
were intended to 2xamine the effect of the penetration holes upon nose cap
buckling stability, as well as local stress around the holes. Alternate
configurations were analyzed in an effort to select the best design for the
SEADS nose cap. These were compared against the baseline nose cap to ensure
that the selected SEADS approach would not reduce the buckling allowable.

The configurations analyzed were as follows:
(1) Unstiffened, i.e., basic 19-ply dome with penetration holes.

(2) Local ring stiffening with a nominal 2.5 inch diameter, 6-ply doubler
pack to produce a 25-ply thickness around each penetration hole.
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Local ring stiffening with a nominal 2.5 inch diameter, 13-ply
doubler pack to produce a 32-ply thickness around each penetration
hole.

(4) Uniform stiffening of the entire dome region by adding 2 plies for a
total thickness of 21 plies.

The fourteen pressure port penetrations of the original configuration,
shown in Figure 4-28, were re-arranged, based upon systems analysis by NASA,
to the more optimum cruciform arrangement shown on Figure 5-1. Port spacing
is approximately 4.8 inches. The nose cap was analyzed for the cruciform
configuration.

5.1.1 Modeling Approach - In order to provide the desired direct
comparison with the baseline nose cap, while obtaining the local stress
distribution around the holes, the basic finite element grid system of the
baseline nose cap was retained, but a finer grid was desired around each of
the holes. Analysis of the number of terms, bandwith, and density of matrix
data for the SEADS analysis resulted in a forecast of impractical computer
costs, computer resource needs, and data storage constraints. Several
alternatives were examined, but the most desirable option found was to model
only half the nose cap. The practicality of thio was based on the fact that
both the nose cap and the applied loads were symmetrical about the vertical
centerline. The feasibility »f this approach was demonstrated on the baseline
nose cap by analyzing both the full nose cap and a half model. Identical
results were obtained.

The SEADS configurations were then analyzed as half models using the grid
pattern illustrated on Figure 5-2. Each hole was modeled as an octagon with
inside diameter of 1.0 inch, the average of the 0.75 inch x 1.25 inches
countersink dimensiona for the port. The grid is shown on Figure 5-3.

The nose cap was supported on springs, representing the support fittings
with spring rates identical to those used in the baseline analysis. T-seals
and expansion seals were excluded as being inconmsequential to the analysis
results.

Material properties for the RCC were based on the then current mass loss
predictions. The minimum secant modulus band was used for the dome region,
wvhile average secant modulus was used for the 38-ply flange.

A NASTRAN differential stiffness analysis approach was used, which is an
iterative solution, that accounts for the deflected shape in arriving &at a
solution. It is, in effect, a large deflection analysis. With this techmnique
either deflection or change in slope of individual elements are tracked as
load is increased to determine the buckling limit. For this nose cap
thickness the change in slope technique was determined to be appropriate and
was based upon analysis of tests of two development nose caps, one of which
wvas 7 plies thick, while the other was 15 plies thick. Two modes of
determining the bduckling 1limit are employed and &re represented on Figure
5-4. The first is termed "snap through"” and is characterized by a reversal of
the slope of an element. The limiting buckling load (insipient buckling) is
taken where the change in slope is zero. The seccnd mode, termed "collapse”,
is one in which the slope of an element goes divergent and the 1limiting
buckling load is that determined by the asymptote to the slope change.




5.1.2 Loadi Conditions - The primary intent of the analyses was to
investigate the buckling resistance of the dome region of the nose cap.
Examination of vehicle 5.3 design 1load conditions revealed that boost
condition BP432 dominated for the dome region, and was the condition analyzed.

In addition, the individual pressure tubes can induce local moments at
each of the penetrations. It was conservatively estimated that the maximum
induced limit load moment would be 25 in.-lb. This value was applied at each
of the holes simultaneously on the unstiffened nose cap and in directions most
adverse to the stability of the dome. However, due to the symmetry of the
model, the moments also had to be applied in a symmetrical fashion. This is
illustrated on Figure 5-5.

5.1.3 Results - Summaries of predicted failing load levels for various
areas of the nose cap configurations analyzed are shown on Table 5-1. Note
that the critical areas between the various nose cap configurations remain
essentially unchanged, although in some cases the critical element may have
moved slightly. The regions of interest are shown on Figure 5-6. It is also
important to note that flange strength in the region of transition between the
19-ply dome and the 38-ply flange is by far more strength critical than the
dome. (It will be shown later that the 38-ply lug region at one of the
attachments is the most critical region of the nose cap.) Even when stability
in the dome region is considered, Table 5-2, the flange transition region is
more critical by a factor of three. The buckling concern, therefore, hecame a
rather academic issue.

In both the dome and flange regions there is little difference between
predicted failing or ©buckling 1loads for the production and SEADS
configurations. The 2l-ply SEADS concept showed the lowest strength, even
lower than for the unstiffened 19-ply dome. This was not expected and was
examined in depth. It was concluded that by stiffening the entire dome
region, the relative stiffness between the flange and dome changed
sufficiently to cause some load redistribution. This resul*ed in more 1load
being carried in the critical regions, which, even in the dome, was not
completely offset by the additional stiffness/strength afforded by the two
extra plies.

The stability results are shown on Table 5-2, while the locations of
instability are pictured on Figures 5-7 and 5-8 for the production and SEADS
configurations, respectively. It is observed that the unstiffened SEADS is
slightly 1less stable than the production nose cap, due to the 1loss in
stiffness created by the holes. With 6-ply ring stiffening, stability
improves and becomes greater than the production design. But when stiffening
is increased further, the behavior is like that of the 2l1-ply nose cap in that
load redistribution actually results in lowered stability. From these results

it is concluded that the 6-ply ring stiffened design is nearly optimum for the
SEADS nose cap.

The influence of tube moments on the stability of the nose cap was
examined only for the unstiffened SEADS configuration. It was found that in




TABLE 5-1

PREDICTED FAILING STRENGTH LOAD LEVELS

6-PLY RING | 13-PLY RING | 2-PLY DOKE ]
PRODUCTION UNSTIFFENED STIFFENED STIFFENED STIFFENED
PLY | ELEM. BFAIL ELEM. BFAIL ELEM. BPAIL ELEM, BFAIL ELEM. &AIL
I.D. I.D. I.D. I.D. I.D.
19 609 | 28.49| 609 | 28.61 609 | 28.61 609 | 28.61 609 }27.32
1111 24.10] 1111 24.21 | 1111 24.04 1 1111 24.151 1111 22.88
22 | 1210 8.94] 1210 9.02 {1211 9.09 | 1211 9.09] 1211 8.58
1217 14.411 1216 14.06 | 1216 14.04 ] 1216 14.04] 1216 13.81
1224 10.87| 1224 12.25 | 1224 12.31 ] 1224 12.311 1224 11.32
32 1312 4.24] 1312 4.29 ] 1312 4.281 1312 4.28] 1312 4.06
1305 5.191 1305 5.40 | 1316 5.21] 1316 5.21] 130% 4.94
38| 1624 5.83] 1624 5.98 | 1624 6.03] 1624 6.03| 1624 5.95
1412 T-15] 1412 T.28 | 1412 T.251 1413 7.19 | 1412 T.2%
8 FAILING LOAD
FAIL. =

T LOAD




TABLE 5-2

SEADS NOSE CAP FAILURE SUMMARY

Failing Load Level (Margin of Safety at Ultimate)

M. S, = Failing Load level _;
1.4

NOSE CAP
CONFIGURATION

STRENGTH FAILURE

DOUBLER
FLANGE

FLANGE
LUG

ORIFICE HOLE
WITHOUT TUBE
BENDING

ORIFICE HOLE
WITH TUBE
BENDING

STABILITY
FAILURE

LESS PRODUCTION
SEADS , UNSTIFFENED

SEADS, 6-PLY RING
STIFFENED

SEADS, 13-PLY
RING STIFFENED

SEADS, 2-PLY DOME
STIFFENED

4.24(2.03)
4.29(2.06)
4.28(2.06)

4.28(2.06)

4.06(1.90)

1.91(0.37)
1.96(0.40)
1.96(0.40)

1.96(0.40)

1.96(0.40)

NQAQ
14.11( 9.08)

15.79(10.28)

18.41(12.15)

15.19( 9.85)

N.A.
7.45(4.32)
11.35(7.11)

13.82(8.87)

8.03(5.31)

12.74(8.10)
11.70(7.36)

13.25(8.46)

11.60(7.29)

8.28(4.91)

Failing

Load =

(Failing Load Level) x (Applied Limit Load)
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the critical buckling region, at a load level ten times limit, that the
rotational effect on the critical grid point was a mere 0.27% change. Since
this is insignificant, no other of the candidate configurations were analyged

for this condition.

The tube moments do, however, influence the local stresses at the holes,
being most pronounced for the unstiffened SEADS configuration. The influence
of local moments is summarized on Table 5-2, where the failing load levels and
resultant margins of safety are shown with and without tube moments. These
value> were computed for Hole No. 1, Figure 5-1, because this was found to be
the most critical of the fourteen. Note that the effect of tube moment is
most pronounced with the unstiffened SEADS and least with the 13-ply ring
astiffening, as expected. It was judged that the 6-ply ring stiffened
configuration would be more than adequate.

The 1lug flange failing load levels and margins of safety are listed in
Table 5-2 for comparison with the other sections of the nose cap. The 1lug
analysis includes consideration of stress concentration factors around the lug
hole and is, therefore, more critical than flange element 1624, shown in
Figure 5-6 and Table 5-1. The difference in margins of safety between the
production design and the SEADS configurations is due to the fact that the
production model included T-seals and expansion seals, while the SEADS models
did not. But only a m.dest difference is observed. It is clear that the lug
region is by far the limiting element, governing load capability for the nose

cap.

5.1.4 Non-Circular Hole Analysis - As a result of an evaluation of
concepts to prevent possible rotational oscillations of the penetration ports,
a non-circular hole configuration was selected. (This is discussed in Section
6.4.) This hole configuration was then stress analyzed in greater depth,
reference 7, than the circular hole configuration, discussed in the previous

gsection.

The non-circular hole configuration is depicted in Figure 5-9. This
geometry was used for all fourteen ports but, since the previous analysis
showed Hole No. 1 to be eritical, this hole was analyzed. The atatic BP482
boost loading condition was applied, and in fact, buundary conditions (loads
and enforced displacements) from the previous model were used for the detail
analysis. The analytical approach was verified by analyzing the octagonally
modeled hole from the previous model. Stresses and deflections matched the
original model's results.

The technique employed was to determine the maximum tube moment that could
be applied in combination with the collapse pressure aerodynamic loads. Unit
20 in.-l1b. tube bending solutions were obtained in two mutually perpendicular
directions. These were then coupled to the pressure loads to determine the
maximum tube moment to cause failure. The tube moments were introduced as

running bearing loads on the RCC.

The overall math model is shown on Figure 5-10, while a more detailed view
of the 851id elements, describing the local region around the hole, 1is
provided as Figure 5-11.

The results showed that a moment vector parallel to the flat sides of the
hole produced maximum stresses. The maximum stresses occurred in the small
radius between flat sides and the 0.720 inch diameter section. The allowable
moment was computed to be 109.5 in.-1b. at ultimate load, which is three times
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the estimated 35 in.-1b. required to fail 0.25 inch diameter coated columbium
tubes. Recognizing that the ultimate margin of safety for the critical 1lug
attachment hole on the nose cap is 0.40, the non-circular hole is far from
producing the limiting stress condition for the SEALS nose cap.

5.2 Thermal Analysis of the Penetration Assembly

In order to obtain updated temperatures for entry trajectory 14414.1C,
provide more refined analysis, and assess thermal gradients around a
penetration assembly, the thermal analysis was re-done, reference 8. The
model was also upgraded to reflect the latest configuration at the time of
analysis. (Additional configuration refinements were made after this analysis
to eliminate the thermocouple mount, change to coated columbium, increase the
diameter of the pressure tube to 0.25 inch diameter, and incorporate the tube
flared end. These changes &are not considered significant to the thermal
analysis results reported here.)

The thermal model, shown on Figure 5-12, consists of 48 nodes and was
divided into quadrants to enable circumferential thermal gradients to be
predicted. (Note that the model includes a 3/32 inch diameter platinum
rhodium pressure tube. It was intended that this material would be chemically
isolated from the columbium components by pure iridium foil.) <Two penetration
assemblies were analyzed: port No. 7, which experiences the highest
temperature; and port No. 1, which is subjected to the largest circumferential
gradients, since it "sees" the cooler leeward side of the nose cap on the
upper quadrant and the hotter windward side of the nose cap on the lower
quadrant.

Cross-radiation between the penetration assemblies and the nose cap and
the bulkhead insulation were input as time-varying temperatures. These were
obtained from the production nose cap analysis. Additionally, a factor cf
1.61 was applied to the edge of the plug (node 15) to account for local step
and gap heating effects between the plug and the nose cap. This factor, which
is the same as that used at the Jjunction of the nose cap and T-segls, is
believed to be conservative for the SEADS application.

Maximum temperatures at port location No. 7 are reached at about 700 sec.,
and are summarized on Figure 5-13. Temperatures for the RCC nose cap reach
2T00F, which is 40F higher than computed for the production nose cap for the
same trajectory and is attributed to the differences in modeling. The RCC in
this model was limited to an 11.0 inch diameter segment, which 1limited
conduction paths and participation in cross-radiation. It was found that the
nut and spacer temperatures were higher by 156F and 187F, respectively, for
the 14414.1C trajectory than the previously analyzed 14414.1 trajectory. The
columbium port exhibits lower temperature than the RCC, due primarily to the
higher emittance of columbium at these temperatures. In summary, tle
columbium port will operate to 2650F, and the pressure tube will reach 2573F
along most of its' 1length, but must connect to the union and nut, which
experience a temperature of 2580F.

Maximum circumferential gradients at the No. 1 port location were found to
remain consis*ant over a broad temperature range. The computed temperatures
and maximum gradients between leeward and windward sides are noted on Figure
5-14. The vorst cases are only 29F in metal components and only 36F in the
RCC spacer. These were judged to be insignificant in terms of creating
meaningful thermal stresses in components.




5.3 Cross-Radiation Blockage Analysis

During entry a portion of the heat input to the lower surface of the nose
cap is transferred by radiation to the relatively cooler upper surface. The
net heat exchange determines the nose cap local temperatures. The SEADS nose
cap assembly incorporates two insulated support posts or manifolds, each
collecting seven of the pressure tubes. These produce two 8-inch diameter
proturberances into the nose cap cavity, which interfere (or block) to a
degree with cross-radiation. There was a concern about the magnitude of this
blockage and the attendent effect upon nose cap temperature distribution and
resultant thermal stresses. Therefore, this was analyzed, reference 9.

The support posts arrangement is shown on Figure 5-15. Since the port
side post extends downward and inward, while the starboard post extends inward
and slightly upward, a full nose cap model was required for analysis.
Production nose cap analyses were conducted using a half model, because of
symmetry and view factors were calculated by the SwRI thermal analyzer
routine. However, the SwRI program cannot calculate view factors with
blockage, and necessitated the use of another routine to compute view factors.

Because of these analytical differences, temperatures were computed with
and without blockage to ensure more accuracy in assessing blockage effects.
Without blockage, nose cap temperatures compared favorably with production
nose cap analysis results. Only 2F difference was found at the maximum
heating 1location, while the maximum difference anywhere Dbetween two
corresponding nodes was only 18F, thus confirming the approach.

The thermal model employed nose cap shell and bulkhead insulation nodes
identical to those used in the production nose cap analysis. Each support
post was divided into four lengthwise sections around the perimeter plus an
“end cap"”. For each division an external surface node und an insulation node
were used. The small diameter pressure tubes were not modeled, since their
contribution to heat blockage was considered insignificant in comparison to
that produced by the two 8-inch diameter posts. The entry trajectory 14414.1C
was analyzed.

Changes in peak nose cap temperatures caused by cross-radiation blockage
are shown on Figure 5-16. The largest increase is near the forward end of the
port eide tube on the inner surface and is S6F. The corresponding external
surface increase is 34F. This raises peak nose cap temperature to 2693F, as
compared to 2684F without the blockage. The largest decreases of temperature
are on the lee side above the starboard post and amount to 42F for the inside
surface and 31F on the external surface. The maximum temperature gradient due
to blockage was found to be only 1F per inch.

The hottest support post is on the port side, where the end cap surface
temperature reaches 2585F, Figure 65-17. By contrast the starboard post
surface temperature peaks at 2476F on the cylindrical surface, Figure 5-18.

The nose cap temperatures were examined for their effect upon thermal
stress. The 56F increase in temperature represents a 2% change in local
temperature which could result in no more than a corresponding increase in
thermal stresses in the dome, reference 10. Thermal stresses in the nose cap
are considerably lower than those produced by airloads. Moreover, dome stress
and stability margins of safety are significantly higher than the airloads
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critical lug attachment region. Therefore, these temperature changes in the
dome are considered insignificant. Thermal growth of the dome and its effect
upon flange stresses was, also, considered and was estimated to be no more
than a 3% increase. Here again, high margins of safety exist in the flange
area for thermoelastic stress so the effect is considered insignificant.




6.0 UPDATED DESIGN

Previous development work supported the viability of the SEADS concept,
particularly with respect to the lack of criticality to the nose cap, when
fourteen holes are introduced. The optimism, derived Irom the development
activities, brought about the involvement of Rockwell as systems managers and,
as a consequence, a re-alignment of responsibilities. It was agreed that
Vought would retain responsibility of the nose cap, the penetration assembly
and certain testing, while Rockwell, in addition to the systems management
role, would be responsible for the pressure tubes, support posts, bulkhead
modification, insulation, data acquisition, and overall systems integration
with the Orbiter.

The entry trajectory was updated to 14414.1C, which produced a 2660F
maximum nose cap temperature. This eliminated nickel alloys from any location
on the penetration assembly, including the pressure tubes. Thus, a redesign
was necessary to replace the nickel with columbium components and to refine
the port design to reduce the tendency for coating damage near the edge
radius. A task was also undertaken to develop a scheme for minimizing self
bonding of columbium parts during long term temperature exposure. Rockwell
elected to use flared coated columbium pressure tubes, which necessitated
coordination with, and reconfiguration of, the union and retention nut. These
changes, coupled with the higher temperature entry condition, promoted the
requirement for additional plasma arc testing to confirm the design changes.

Vought had recommended that Rockwell strongly consider platinum-rhodium
pressure tubes, rather than coated columbium, due to concern about the
integrity of the coated columbium, particularly in the induced thermal strain
(creep) environment. Platinum-rhodium would have required the application of
localized iridium foil chemical barriers at the union connection to protect
the platinum from chemical attack by the columbium silicide coating, but would
have, potentially, provided greater reliability. Rockwell, however, was
concerned in part by the possibility of a silicon rich atmosphere, produced by
the siliconized nose cap, and resultant chemical attack. Therefore, Rockwell
elected to pursue the coated columbium, where they, together with VacHyd,
developed a technique for coating the inside of the tubes. The approach used
was to suck the coating slurry through the tube like in a soda straw. This
proved highly effective, as determined by oxidation tests, and subsequent
inspection, using fiber optics. The coated columbium tubes integrity was
demonstrated in thermal strain (Section 8.0) and vibration tests (Section
9.0). However, the end of the flare proved fragile, as determined by plasma
tests of penetration assembly models and vibration tests (Sections 7.0 and
9.0).

Two other investigations were conducted. First, concern was expressed
that the penetration assembly could oscillate in the nose cap and perhaps
cause excessive wear from the dynamic environment on either the RCC or the
columbium coatings. Concepts to preclude this were examined. Second, it was
considered desirable that the strength of the penetration assembly should
exceed that of the pressure tubes so that in the event of over-load, the tubes
would be exposing only a small hole into the nose cap cavity to admit the hot
plasma. The strength was evaluated by both analysis and test.

Each of these activities are discussed in this section.

6.1 Penetration Assembly Redesign
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The coated columbium port was modified to inco
viously 0.03 inch radius
convective heating.

to enhance coatability.

The union was configured to accept the flared tube design furnished
Rockwell, and the nut end threads were changed from 3/8 - 16 to 7/16 - 14.
The Rockwell tube design incorporated split coated columbium ferrules t:
permit assembly of the nuts to the coated columbium tube, which was initiall,
to be flared on both ends. Flaring couldn't be accomplished on asseably,
because of the strain limits of the coating. Assembly required insertion ot
the flared tube through the nut, locating the ferrules on either side of the
tube,
tube. Rockwell demonstrated this approach using machined aluminum component:s
on a flared aluminum tube, where it worked well. However, when it was
employed on the coated columbium parts, used on the plasma arc test models, it
was discovered that the ferrules invariably opened slightly aft of the nut.
The problem was identified with tolerance variations, including surface
roughness, inherent with coated parts. While the approach was considered
functional, it was considered less than desirable and was ultimately abandoned
in favor of a different approach. The revised design for tube installation,
employed a coated flare on the penetration end only. A short section of the
cool, manifold end 5f the tube was left uncoated so that it could be flared or

assembly. This ultimately proved Successful and eliminated the need for the
split ferrules.

The nut was reconfigured to conform to the new tube design and the wire
locking feature was revised to provide a flange with multiple lockwire holes.

The washer thickness was increased from 0.02 inch to 0.06 inch to improve
coatability and ruggedness in the event it ¥as necessary to use spanners for
disassembly.

At this stage of the program, the requirement for measuring temperature at
the penetration assembly still existed, and therefore, the themocouple mount
was retained. However, because of the coated columbium parts, an iridium
mount was used. Coated columbium was considered, but the concern of reliably
coating the small 0.04 or 0.06 inch diameter holes for themmocouple insertior
and the possibility of using staking for thermocouple retention, caused this
to be dismissed. design thermocouples were eliminated from the
penetration assembly, because of the complexity of inastallation and routing.
Radiometers, focused on the nose cap inner surface like those used for the
baseline nose cap temperature measurement, were substituted.

Component designs are included in Appendix C.

Previous tests of columbium com
coating, which, except for the loca
the port, With the
re refractory
Since Rockwell selected that
coating for the pressure tubes, we also selected it for the penetration
assembly components. However, there was concern about the ability of either
coating to survive at these temperatures for a sufficient length of time. The
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literature also indicated that the emittance of coated columbium would degrade
with exposure time, causing temperature increases. These concerns were
investigated in a limited plasma arc test program using 0.75 inch diameter x
0.25 inch thick buttons. 1Initial plasma arc conditions were set up, using
silicon carbide coated RCC to achieve the 2660F temperature target, and were
to be held constant through 10-hours of testing. However, due to
misunderstanding, the first 5-hours resulted in some lower temperatures than
desired. Terwperatures achieved are provided on Figure 6-1 and show
. temperature excursions to 2700F. At the conclusion of the 10-hours exposure,
;neither coating system exhibited any evidence of oxidation damage and no
obvious subsurface oxidation, as determined by probing the surface with a
pointed tool. It would appear that either coating system would function
satisfactorily.

Nevertheless, a backup to the coated columbium port was rétained in the
form of silicon carbide coated Stackpole 2020 graphite. It was known that
this combination would meet and exceed the temperature requirements, although
the 1life of the port would eventually be degraded through subsurface
oxidation. Therefore, one of the plasma arc models tested in this phese
incorporated a coated graphite port. All other components remained the same
as for the coated columbium port model. It should be mentioned that the
design of the penetration assembly was always predicated on the possible
eventual use of a graphite port as an alternative. As such, the columbium
port became somewhat massive and far over-strength. However, since weight was
not an issue, this was not a concern.

6.2 Penetration Assembly Strength Determination

As noted above, a graphite port was retained as a backup to the columbium
port. Graphite is substantially weaker than columbium so strength analysis
and test were conducted using the graphite port.

6.2.1 Bending Test - Testing, reference 11, was conducted in two
sequences. The first test employed coated columbium, 5/32 inch diameter,
pressure tubes with the split ferrules, using the configuration shown on
Figure 6-2. This test resultsd in excessive deflection and yielding of the
two tubes at maximum bending moments of 13.3 in.-lb. and 14.2 in.-lb., where
the tube enters the nut. A 5/32 inch diameter steel rod was employed in a
third test, where the maximum moment achieved was 109.6 in.-1b. before
excessive yielding of the rod forced termination of the test. There was no
apparent damage inflicted on the penetration assembly components.

Since the 5/32 inch diameter tubes and rods could not fail the graphite, a
second test series was conducted using 0.25 inch diameter, 120 KSI heat treat
steel rods. For this series three of the four graphite ports were
pre-oxidized at 2500F to produce weight losses up to 18.4% (7-hours
exposure). (It should be noted that no post coating treatment was applied to
these ports. The Type A treatment, as used on leading edge components, would
significantly reduce weight loss and enhance strength retention.) The results
of these tests are shown on Figure 6-3, where it is seen that the maximum
moment achieved was 122 in.-1lb. where the rod enters the nut. Failure was
produced in the graphite ports, where two failure modes were evident. The
first was complete fracture across the port in the hollowed out region for
thread termination. The second mode occurred on one port, and resulted in
thread shear and fracture of the aft edge of the port. In this case the union
could not be ex'racted without disassembly.
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At this point of the program the pressure tube size was increased to 0.25
inch diameter x 0.015 inch wall primarily because of lightning strike consider-
ations. The estimated failing strength of this size tube is shown on Figure
6-3 for comparison with test results. It is concluded that the graphite port
possesses bending strength in excess of that required to fail the pressure
tube up to a certain weight loss. If a graphite port were to be used,
additional testing would be required to characterize the strength/weight loss
behavior and to correlate weight loss with mission cycles. A post coating
seal treatment would be employed to increase mission life.

6.2.2 Axial Strength Analysis - A strength analysis was conducted to
determine the weakest link of the penetration assembly and pressure tube and
to estimate the maximum axial load capability of the system, reference 12.
Here again, the graphite port was considered, since it is only one-tenth as
strong as the columbium. Stackpole 2020 tension stress allowable was
estimated to be 2730 psi, while the shear stress was taken at half that value.

It was calculated that a 5/32 inch diameter columbium pressure tube would
fail at 170 1lb. but this would increase to 313 1b. for the 1/4 inch diameter
tube. The port was calculated to fail at 400 1lb. in tension. When thread
shear was considered, it wasn't clear how the Si(C coating would contribute to
strength so a range between 132 1b. and 484 1b. was computed, the lower value
representing graphite strength and the higher value being for SiC threads. It
is expected that the true strength for unoxidized material is closer to the
higher value, based upon the bending tests, where thread shear didn't occur
until the weight loss became appreciable. However, even if the lower strength
value is used, it is far in excess of that which could reasonably be expected
to be applied by bent or coiled tubes.

6.3 Evaluation of Sticking Threads

It was discovered during plasma testing of columbium comporents that the
union and port could not be disassembled after 4-hours exposure. It wasn't
certain whether this was due to diffusion bonding or simply the result of
scale from the coatings, causing binding in the threads. 1In either event it
was deemed necessary to devise some scheme to prevent this binding action.
Accordingly, a program was undertaken, reference 13, to evaluate the
feasibility of using some anti-seize compound to enhance disassembly of
components and minimize potential damage to the nose cap.

Testing was conducted using both 0.75 inch diameter buttons and union/nut
combinations. Test exposure was 2500F at 1 atm in one-hour increments for
times ranging to 7-hours. Because of t.» limitation on the number of coated
columbium parts available, many Lad to be reused to examine alternate
anti-seize compounds and in some cases even when parts were severely
oxidized. No precautions were taken to minimizz wrench damage on either the
unions or nuts.

In the first series of tests, lasting 5-hours, a comparison was made
between union/nut combinations where (1) no anti-seize precautions were taken,
(2) threads were brushe” . _er each hour to remove scale, and (3) a dry Mg0
powder was brushed onto the threads. Initial assemblies were finger tight.
Breakaway torques ranging to 15 ft.-lb. for the non-powdered assemblies,
dropped to 10-12 ft.-1lt. when the threads were squirted with isopropyl alcohol
(IPA). There was essentially no change in breakaway torque when the threads
were brushed off after each hour, leading to the belief that loose scale was




not the only contributer to high disassembly torque. The application of Mg0
powder was beneficial in that disassembly torques were roughly 80% of that for
the unpowdered assemblies. However, improvement was desired.

In other tests, slurries, combining powders and carriers of IPA or
Methocel were tried, along with commercial brazing anti-seize compounds.
Those powders found to have mevit included SiC, H05813, and HfO, with
ZrO, and Mg0 showing less favorable performance. Of the commercial products
only the green Stop-Off material indicated potential. Red Stop-Off and white
Stop-It proved ineffective in this application.

Since the most promising combination appeared to be SiC, 1200 grit powder
in a Methocel carrier, and SiC powder was veadily available and compatible
with the silicide coating on columbium, confirmation tests were conducted with
this combination. In one trial involving YH109 coated parts, exposed for
4-hours, disassembly torque varied between 5 and 8 ft.-1lb. 1In another test,
using R512E coated columbium, breakaway torques remained in the 2 -3 ft.- 1lb.
range through 6-hours and was only 3 - 4 ft.-1b. after the 7th hour of
exposure. In all cases IPA was squirted into the threads to enhance release.
One interesting note is that on one attempt the IPA was ignited and then
re-applied. In this case breakaway torque was estimated at a mere 1 in.-1lb.
This approach may have merit in stubborn cases, since the heat generated from
burning IPA should not be detrimental to the refractory materials involved.

In the course of these tests damage was readily inflicted on the wrenching
surfaces of the unions and nuts, pointing out the need for carefully designed,
plastic faced wrenches for use on the columbium parts. In addition, oxidation
of threads was evidenced, some of which can be attributed to mechanical damage
from high torque requirements and others to improper radiusing of threads,
particularly on the lead-in threads.

In summary, the study resulted in the successful demonstration of a SiC
powder/Methocel slurry baked onto the parts, as being an effective improvement
against part seizure wiun elevated temperature exposure. When IPA is squirted
into the threaded connection, disassembly is eased. Igniting the mixture
appears advantageous to reducing torque.

6.4 Anti-Rotation Concepts

A concern was expressed by NASA/JSC that oscillatory motion of the SEADS
penetration assembly could cause loosening of the assembly in the countersunk
nose cap hole. The loosening would aggravate the situation, producing more
undamped oscillation, with a resuit of producing coating wear and, ultimately,
loss of oxidation protection. 1In this scenario the initial loosening would be
caused by excitation in the acoustic noise dynamic environment due to
imperfect seating of the port in the nose cap because of high points or
powdery residue from either the nose cap or columbium coating.

Therefore, a study was undertaken to devise concepts to prevent rotation
of the support assembly, evaluate the concepts, and select one or two for
vibration test evaluation. Eight concepts were defined and ranked in two
separate studies, references 14 and 15. These concepts are shown in Figure
6-4. It should be noted that any of the concepts will allow a degree of
oscillation due to tolerancing and gaps between mating parts. Initially, only
the first seven concepts were ranked by a team consisting of Engineering
disciplines, Tooling and Manufacturing. The apparent simplicity of Concept 7
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resulted in its' emergence as a clear winner. The falacy of this was that the
penetration assembly relies upon the pressura tube to provide the restraint,
vhereas in fact the tube dynamics is the biggest driver to produce oscillation
of tbe penetration assembly. Concepts 4, 6 and 1 were closely grouped behind
7 and would have required quantitative cost analysis to determine the best.

In a re-look at these ideas, reference 15, Concept 8 was introduced, and
an analysis of angular movement was made, based on tolerance buildup. The
results of this evaluation and final ranking are shown in Table 6-1. This
shows the ball lock (#8) and flat sided hole in the nose cap (#1) to be the
favored acnemes.

The ball lock was conceived as being 3/16 inch diameter, high density
alumina, ruby, or sapphire. Synthetic rubys were procured for test because
they have high hardness, are made to close tolerance, are readily available
and are inexpensive. Concern was expressed by NASA/JSC that the rubys may
suffer thermal shock, even though they were relatively small in diameter. A
test ball, supplied to NASA for thermal shock ‘est, passed with no problem.

Both the ruby ball lock and non-circular hole anti-rotation concepts were
incorporated in a vibration test, Section 9.0, and each performed acceptably
(as did the penetration assemblies without anti-rotationf. In addition the
ruby ball lock was employed on the themal expansion tests of the pressure
tubes, Section 8.0, where no problems with the concept were experienced. It
was concluded that either technique would prove satisfactory, but by concensus
the non-circular hole scheme was selected for the production SEADS. It was
shown, Section 5.1.4, that the non-circular hole design was structurally
adequate.
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7.0 FINAL PLASMA ARC TESTS

The change of design requirement to the 14414.1C entry trajectory resulted
in a maximum design temperature of 2660F, a redesign of components as noted in
Section 6.0, and a need for retest in a plasma arc facility to confirm that
the design would survive the higher temperature. Two new models (and a
calibrator) were fabricated for re-test in the NASA/LaRC Facility B plasma
arc. These models differed only in the port material, onme being VH109 coated
C-103 columbium, while the other was silicon carbide coated Stackpole 2020
graphite. The latter was retained as a backup design in the event the test
conditions proved too demanding for the silicide coated columbium. In each
model the union, nut, lockwasher, and pressure tube were fabricated from
silicide coated columbium.

Unfortunately, the desired temperature, as determined by model mounted
thermocouples, could not be achieved in this facility, forcing another test to
be conducted in the NASA/ARC Aerodynamic Heating Tunnel. The two test
programs are discussed in this section. A more detailed treatment is found in
reference 16.

7.1 NASA/LaRC Plasma Tests

The test models, the calibrator and the ussociated thermocouple locations
are illustrated by Figures 7-1 and 7-2, respectively. Note that on these
tests the 5/32 inch diameter pressure tube and ferrules design were used,
since the increased tube diameter and elimination of ferrules were not yet
introduced. In addition, the thermocouple mount was retained because the
decision to delete temperature measurement for the production design was not
yet made. All thermocouples were 10-mil diameter tungsten 5 rhenium/tungsten
26 rhenium in alumina insulators with a ground wire. Astroceram "A" was used
to bond thermocouples to RCC parts. Three Ircon 300 pyrometers were also used
to monitor test conditions, two focused on the RCC disc and one on the port.
The intent was to use these for temperature monitoring, when the thermocouples
burned out.

The calibrator was used to set the test conditions, but a disparity
between temperature measured by the thermocouples and that determined by the
pyrometers was immediately apparent. Pyrometers indicated the desired
temperature was met, while the thermocouples, corrected for the temperature
gradient across the disc, showed that the temperature was 100F - 150F lower
than the target 2660F. Higher temperature could not be achieved in this test
facility, while still maintaining 10-minutes exposure times. This led to a
controversy over which temperature measurement technique was the more
correct. NASA/LaRC test personrel and Rockwell sided with the pyrometers,
while Vought took the position that the thermocouples were the more accurate.
Attempts to resolve this discrepancy are discussed in Section 7.3.

Since there was no other facility available at the time in which to
conduct the tests, it was decided to test in Facility B and gain valuable
information on long term columbium behavior with the modified parts, VH109
coating, and anti-seize compound on the threads. This limited the exposure
temperature to about 2525F at C.05 atm. Each model was tested for 5-hours in
10-minute increments with disassembly at l-hour intervals. The SiC anti-seize
compound was re-applied after each disassembly.
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T.1.1 Colurbium Port Model - Thrcughout the test of the -2 model with
columbium porf, the various columbium parts evidenced areas of breached
coating. These were identified by yellow oxide formations. The flared end of
the pressure tube suffered the most damage, bdut still, after S-hours of
exposure, it remained anchored in place and was not in immediate danger of
coming loose. All parts, even with the local oxidation sites, were considered
as not posing a threat to structural integrity. Photographs of the individual
parts, following test, are shown on Figures 7-3 through 7-7. Most of the

variegated eppearance is due to normal discoloration or the SiC anti-seize

powder. Oxidation sites were found on the corners of the hex part of the
union and two locations on the threads; one of the lockwire holes on the nut
(but not a lockwire location) oxidiged; one of the ferrules showed an
oxidation site; and the port was damaged locally, where a buildup of scale
between the port and RCC ruptured during disassembly to expose bare
columbium. No damage was in evidence on either the lockwasher or the RCC
components.

An anomaly was found after the fifth hour of test when it was discovered
that the thermocouple mount was displaced from its' intended position. No
logical explanation could be postulated for this, other than improper assembly
following the fourth hour inspection.

After each hour of test, the parts were readily disassembled, being
enhanced by the application of IPA to the threads. This pointed wup the
effectiveness of the Si{ powder as an anti-seize agent.

Temperature data was obtained using three Ircon 300 pyrometers and five
tungsten rhenium thermocouples. One of the pyrometers was calibrated by
viewing through a window &and mirror at the 55° angle used in the test
facility. The other two pyrometers were in turn calibrated from the first by
viewing at a common spot on the calibrator disc at various plasma arc
operating conditions. Pyrometer correction was arbitrarily taken at an
emittance of 0.85. However, at the pyrometers sensitive wave length of 2.3 ,
the emittance of coated RCC is somewhat lower as indictated by the temperature
correction chart of Figure 7-8. This chart was constructed using RCC spectral
emittance data generated on the LESS Program.

Typical temperature response, during a lO-minute exposure, is shown on
Figure 7-9. Note that the pyrometer data is uncorrected for spectral
emittance. End-of-run temperature distribution, through the model, is
provided by Figure 7-10 for four exposures, illustrating repeatability of the
thermocouple response. The difference in front face temperature measurement,
as predicted by thermocouple data and calculated gradient across the RCC disc,
compared against uncorrected and spectral emittance corrected pyrometer
measurements, is indicated. Thermocouple data projects 2525F maximum
temperature, while corrected pyrometer data indicates 2820F surface
temperature, a difference of nearly 300F. This disparity is discussed in
Section 7.3. To ililustrate temperature variations experienced during the 30
exposures, uncorrected pyrometer data is provided on Figure 7-11. The data is
not always consistent between the three pyrometers. Of particular interest is
the apparent stability of the emittance of the silicide coating when the
questionable data from pyrometer number 89 is discounted. Pyrometer data from
the thirtieth run is not higher than from previous runs. Therefore, there is
no apparent decrease of emittance of the VH109 for at least 5-hours and based
upon button tests, Section 6.1, this observation could be extended to 10~hours.
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Pressure measurements were made on this model for the entire teat sequence
and were compared with the arc jet pressure probe. Good agreement was
obtained indicating that the finger tight joint at the tube/union interface is
adequate. Sample data from test are shown below, which compares facility
mummluwmdMmmewhmnﬂmnwdpmuueﬂumwat&sw.md
600 sec. into a test run. Pressure fluctuations preclude precise comparisons.

PRESSURE COMPARISON

"PRESSURE IN MM Hg

Jmmm TURNEL PRESS. MODEL “PRESS.

60 Sec. 600 Sec.

38.8 38.4 42.2
39.5 37.8 38.5
38.7 37.9 38.6
39.6 37.6 38.3
35.6 37.8 38.4
39.1 37.7 38.4

Te1l.2 Graphite Egzt Model - This model, designated -1, was exposed for
33 cycles to accumulate 5-hours exposure, the extra cycles being necessary to
make up for aborted runs, caused primarily by facility water leaks. Oxidation
resistance of the columbium parts proved somewhat better on this model,
although several oxidation sites were evident. The nut experienced oxidation
on the flanged end, as before, initiating at an unused lockwire hole. The
last thread on the nut end of the union also had a coating breach. The flared
end of the pressure tube again suffered oxidation, which scalloped the end,
but the damage was significantly less than on the -2 model tube. Although
there was discoloration in varying degrees, and flaking of scale on the
lockwasher, none of the other metallic components suffered any oxidation.

The graphite port developed an unusual buildup of material in the port
hole beginning in the first hour of test and continued through the fourth
hour, but never approached complete blockage of the hole. After the fifth
hour the material buildup had disappeared 8o its makeup and origin are
unknown. At the conclusion of test, it was noted that the first three threads
on the port were chipped, probably as a result of subsurface oxidation.
Subsurface oxidation can be dramatically decreased with the most recent post
coating treatment, but this graphite port did not employ this.

Disassembly at one-hour intervals was judged to be easier than with the -2
model. Port to union separation required only finger pressure, but the nut to
union connection required wrenches. Photos of the <~1 model components
following teat are shown on Figures 7-12 through 7-19.

As with the -2 model, this -1 model was judged to be structurally
functional after the S5-hour exposure, even though oxidation was present. Once
the coating is breached and oxidation commences, the rate is so slow as to
pose no immediate threat to the safety of the system. For example, those
oxidation sites, evident after the first hour of exposure, did not progress
sufficiently far through the fifth hour, as to be considered hazardous.




Temperature data for the -1 model are shown on Figures 7-20 through 7-22.
Typical temperature time histories during & run are provided on PFigure 7-20.
The pyrometer data are uncorrected for spectral emittance. The dates shown are
for Run #1 but Run #2 data fell elmost on top of these plots, indicating
reproducibility of the thermocouples. The heatup rate was somewhat greater
than for the columbium model, Figure 7-9, posseibly due to the difference of
mass between the columbium and graphite ports.

End of run temperature gradients through the model for the first four runs
are shown on Figure 7-21. Data from Runs #1 and #2 are consistent, Run #3 had
a facility water leak to lower the temperature and Run #4 was simply a lower
temperature run, due to facility operation variations. The gradients through
the model are consistent, but are slightly lower than those for the columbium
port model. This was not investigated, so the reason for this difference is
unknown. T

The uncorrected pyrometer temperature data for each run is plotted on
Figure 7-22. These provide an indication of exposure conditions.

7.1.3 - Conclusions - Even though some design changes were made to the
columbium components to improve coating life, localized oxidation did occur in
these tests. It was apparent that additional changes were required to enhance
coatability and reduce damage potential from the use of wrenches for
disassembly. This was done for components used in vibration and tube thermal
tests.

The effectiveness of the anti-seigze compound was demonstrated.

The chipping of the threads on the graphite port due to subsurface
oxidation demonstrated the need for a post coating treatment seal or the
mission life would probably be less than for the columbium port.

Even though oxidation pits developed on several columbium parts, the
oxidation rates were low, and structural integrity was not in jeopardy.

7.2 NASA/ARC Plasma Test

Since it was not confirmed that the target temperature was reached in the
NASA/LaRC tests, because of the thermocouple/pyrometer disparity, an
additional test was conducted in the NASA/ARC Aerodynamic Heating Tunnel,
reference 16. A test model was built identical to the columbium port model,
used at NASA/LaRC, but with thermocouple changes and with flared holder to
interface with the NASA/ARC plasma arc facility. The NASA/LaRC calibrator
model was also re-instrumented for this test. Instrumentation differences
were in the placement of tungsten/rhenium thermocouples adjacent to the front
face coating in order to obtain the temperature gradient across the RCC disc.
The model and calibrator are illustrated by Figures 7-23 and 7-24,
respectively, while the flared holder is shown on Figure 7-25.

The objectives of this test were to demonstrate survivability of the
penetration assembly at the 2660F design temperature, as measured by
thermocouples, and for a reasonable period of time, which was limited to two
hours.




As in previous tests, the facility conditions were set wusing the
calibrator. In fact confirmation of the established operating condition was
made just prior to insertion of the test model.

However, the first model run produced an anomaly, when the temperature
soared to 2950F, before power was reduced, but remained at 2920F at the
conclusion of the run, which was aborted at 6 1/2 minutes. It was discovered
that the coating on the front face of the model holder had burned off,
exposing bare graphite. This occurrance was attributed to an excessively thin
coating. It was thought at- the time that the loss of the 1low catalytic
coating to expose catalytic graphite with resultant higher temperature was
responsible for the excessive temperature. lLater analysis revealed that the
columbium port was probably also catalytic and contributed to the high
temperature. This is discussed in Section 7.4.

Inspection of the model, after removal from tke holder, disclosed no
apparent damage to any of the penetration components. Only nomal
discoloration was present, and a faint line around the periphery of the port
hzad near the radius tangent was observed. It was speculated that the
silicide coating began to "flow" at the high exposure temperature, which would
have been greatest in this region. The glassrock insulation in the holder was
found to be cracked confirming the over-temperature exposure. The condition
of the assembly is shown on Figures 7-26 and 7-27.

At this point the model was transferred to the calibrator holder for
continuance of test. All of the thermocouples were preserved, which was
remarkable, since tungsten/rhenium embrittles bdadly after high temperature
exposure.

The second exposure was conducted at slightly reduced power setting
compared to that at the end of the first run. Still the temperature exceeded
the desired value, reaching 2830F before power and pressure were reduced
further to produce an end-of-run temperature of 2710F. Subsequent runs were
made at 0.03 atm and power 1level :hout half of that setup with the
calibrator. This resulted in highly repeatable conditions and surface
temperatures about S5OF higher than the target.

The model was exposed for a total of 1l cycles, accumulating 1 hour and 57
minutes. Front and backface disc temperature, obtained during the first hour
of test, are shown on Figure 7-28. A typical temperature-time history is
illustrated on Figure 7-29, while temperature gradients through the model are
provided as Figure 7-30. Note that the gradient is less than that obtained in
the NASA/LaRC test, possibly the result of higher heating and the relatively
higher temperature of the port due to catalycity effects, Section 7.4. In the
NASA/ARC test there was no pyrometer focused on the port so that the
speculation that the port operated at a higher temperature than the RCC uisc
was not confirmed experimentally.

All of the thermocouples were destroyed at the end of one hour, when model
disassembly was attempted. Pyrometer data was relied upon thereafter to
monitor surface temperature. On the basis of the early exposures, when the
thermocouples were active, an in situ "calibration" between the front surface
thermocouple and each pyrometer was obtained. Using this, the true estimated
surface temperature for each run, based upon pyrometer output, was made and
shown on Figure 7-31. After the first run, surface temperature was maintained
between 2640F and 2740F, and generally exceeded the 2660F target temperature.
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As indicated above, an attempt was made to disassemble the penetration
assembly after the first hour of test for inspection. Inspection after
removal from the holder revealed no oxidation and all parts appeared normal.
However, the parts would not separate within the torque limits of the plastic
coated wrenches, and the desire to avoid significant damage to the coatings.
Even light tapping and chilling in dry ice in an attempt to break any bonds,
proved unfruitful. However, in the effort to disassemble, it was suspected
that some coating damage was inflicted. No further attempts at disassembly
vere made and the model was re-installed in the graphite holder for test
continuance.

At the conclusion of, test it was observed that a cornmer of the union hex
vas oxidized slightly, promoted, undoubtedly, from the earlier attempt to
disassemble. No other damage was observed.

It was feared that the threaded connections were diffusion bonded
together, but disassembly was nevertheless attempted. WD-40 penetrating oil
was squirted into the nut to union connection - not into the union to port
threads. The lockwasher was protected by plastic strips, while the nut was
protected only with masking tape. Gripping the lockwasher in a vise and using
a standard six-inch open end wrench to apply torque to the nut, the union
unscrevwed from the port at an estimated 10-15 ft. 1lb. of torque. Gripping the
union in the vise with protective plastic strips, permitted the nut to be
unscrewed from the union, again at an estimated 10-15 ft. 1lb. of torque. No
observable damage was inflicted to the coatings from this disassembly
operation.

The significance of this is two-fold: first, the parts can be
disassembled, even after excessive temperature exposure, without inflicting
damage to the “umbium or risking damage to the RCC; second, it is concluded
that better deasigned plastic wrenches should improve the ability to
disassemble the parts.

Upon disassembly there was no observed internal damage to the union, port
nut, or ferrules. Although a shiney spot did appear on a union thread it was
not accompanied by oxidation "flowering". One corner of the hex section of
the union exhibited oxidation, as noted previously, but this is attributed to
damage while attempting to disassemble after the first hour of exposure.
There was slight damage and scalloping of the flared end of the tube, but this
was gignificantly less than that observed on the -2 model tested at
NASA/LaRC. The RCC hole exhibited slight scale buildup from the columbium,
similar to that observed in previous tests.

It was discovered that the iridium thermocouple mount was securely
attached to the columbium lockwasher. When pried apart, some of the columbium
coating adhered to the iridium, thus exposing bare columbium. There appeared
to be an iridium/silicide coating reaction. This had not been experienced in
previous, lower temperature tests. This condition is of academic interest,
since the iridium mount is not employed on the production SEADS design.
Farther, while iridium lockwire is used between the lockwasher and nut, no
reaction or sticking was observed at the 1lockwire holes, indicating the
application of iridium lockwire is acceptable.

The last item to note is that the cavity between the union and port
contained flakes presumed to be scale from the coated columbium parts. Scale
has been observed in previous tests.




Photographs of the compoaents following tests are included as Figures 7-32
through 7-43.

This test proved highly successful in that it demonstrated over
temperature capability of the columbium components, and the ability to survive
multi-mission exposure to the design temperature condition. Further, even
with the temperature overshoot, the components could be disassembled without
risking damage to the nose cap, assuming appropriately designed wrenches.

7.3 Thermocouple/Pyrometer Disparity

The discrepancy between the surface temperature, as determined by the
thermocouples and that measured by pyrometers during the NASA/LaRC plasma arc
tests, was examined. Attempts to determine if the apparent high pyrometer
readings were due to arc reflection by continuing data collection, after the
arc was extinguished, proved unfruitful. The inability to correlate arc decay
with pyrometer measured temperature decay, presumably due to data system time
lag, prevented a conclusive investigation.

Two other approaches were, therefore, taken in an effort to obtain some
indication of which measurement technique appeared the more plausible:

(1) The plasma arc test model was thermally analyzed by a finite element
differencing *“echnique to establish the temperature gradient through
the RCC disc, and to assess measured thermal gradients in the model
with analytical predictions, reference 17.

(2) Thermocouple mounting and routing variations were tested in a small
furnace and compared against the furnace platinum/rhodium thermo-
couples and pyrometers, reference 18.

Bach of these are discussed in the following sections.

7.3.1 Test Model Thermal Analysis - Only the -2 model, employing the
columbium port, was analyzed for this investigation. This model employed five
tungsten-5% rhenium/tungsten-26% rhenium thermocouples positioned as shown in
Figure 7-1. In addition, three Ircon 300 pyrometers, sensitive in the 2.3
wave length, were focused on the front face of the model, two on the RCC and
one on the port. The second exposure, Run #2 (Figure 7-9) was analyzed. This
was very repeatable for Runs #2 through #5 as indicated by end-of-run
temperatures, plotted on Figure 7-10. Run #1 was the only exposure for which
pyrometer measurements were taken during cooldown but this run suffered from a
facility water leak and temperature was affected.

The thermal math model used, Figure 7-44, was a modified and updated
version of that used in previous analysis, Section 4.2. The internal cavity
was allowed to cross radiate. FExternal heating rates were defined according
to two schemes:

(1) A uniform front face heat flux adjusted such that the response of
node 23, Figure 7-44, approximated the temperature indicated by T/C
#5, Figure 7-1.
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(2) A uniform front face heat flux adjusted such that the response of
node 32, Pigure 7-44, closely matched the temperature indicated by

pyrometer #82 as corrected for spectral emittance, Pigure 7-8.

The side walls of the graphite holder received a uniform heat flux of one
tenth that of the front face values in both cases. Analysis included the 600
sec. heating phase, as well as 15 sec. of cool-down.

T.3.1.1 Controlling to thermocouple #5 - The results of the heating
portion of the analysis are shown on Figures 7-45, 7-46 and 7-47. The maximum
computed gradient across the RCC disc is 119FP. The difference in temperature
between themmocouple #4 and pyrometer #82 is 400F. An error of this magnitude
(400F vs. 119F) in predicting the gradient across the disc is highly unlikely.

The agreement between calculated temperature response and thermocouple
data on Figures 7-46 and 7-47, while not perfect, are reasonably good,
recognizing that we were searching for a disparity of several hundred degrees
fahrenheit. Better agreement could be achieved by reshaping the imposed heat
flux, but the problem did not warrant the expenditure of additional effort.

Results for the cool-down phase are shown on Figures 7-48, 7-49, and
7-50. On Figure 7-48 the calculated and measured response of node 23 agree
well. The corresponding calculated temperature drop for the surface node is
275F in 15 sec. By contrast the pyrometer data indicates a 900F reduction in
15 sec. Although the convective enviromment is not known, this drop seems
unusually large. Calculations show that this represents a heat loss greater

than if both the front and back face surface nodes were allowed to radiate to
absolute zero.

However, if the pyrometer was reading high due to arc reflections, it
would be expected that the true value would be indicated shortly after plasma
arc shut-down. Such is not the case, since the pyrometer indicates a
temperature value 350F lower than calculated 15 sec. after arc shut-down and
continues to fall at a much steeper rate. This anomaly is not understood.

Calculated versus measured temperature comparison for the RCC spacer,
Figure 7-49, are in good agreement, including the cool-off rate. Neither the
nut, Figure 7-49, nor the thermocouple mount, Figure 7-50, temperature
comparisons are as good in that the computed temperature drop-off does not
match the measured change. It is believed that this difference is due to an
accumulation of modeling veaknesses, since the disparity becomes greater as
distance increases from the controlling surface nodes.

Te3.1e2 Controlling to Pyrometer #82 - When the imposed heat flux is
adjusted to match pyrometer data, the computed end-of-run temperature gradient
across the RCC disc increases to 161F as shown on Figure 7-51. For this case
the computed Node 23 temperature is 280F higher than that indicated by the
thermocouple. Similar disparities between calculated temperature and
thermocouple temperature are shown by Figures 7-52 and 7-53.

Results for the cool-down phase of analysis are provided as Figures 7-54,

7-55 and 7-56. Differences between calculated and measured temperatures
remain large.




Te3.1e3 Conclusions

(1) The thermal math model provided a reasonable representation of the
temperature response of the test model. While additional refinement
could have been introduced, it was judged to be an unnecessary
expenditure.

The maximum steady state computed temperature across the disc is
probably about 119F, but even assuming pyrometer accuracy, the
gradient would not exceed 161F.

If the pyrometer data is assumed to be correct, all five of the
thermocouples would have to be in error on the low side by a
magnitude in excess of 200F. This is not supported by the
thermocouple evaluation reported in Sectiom 7.3%.2.

Although arc reflections are generally suspected for pyrometer
discrepancies, this is not fully supported by the test data, since
pyrometer temperatures failed to level off +to the predicted
temperatures during cool-down. The reason for this remains unknown.

Te3.2 Thermocouple Evaluation - The tungsten rhenium thermocouples,
used in the plasma test model, were assessed for measurement accuracy,
reference 18. At the same time, alternate mounting schemes were examined for
comparison with that used in the arc jet and for possible improved
installation if it proved necessary.

When the pyrometer/thermocouple accuracy question was first raised,
concerns were expressed by the NASA test agency regarding possible poisorning
of the themmocouples with the Astroceram A cement, possible heat conduction
down the wires leading to a low temperature reading at the wires juncture, or
possible electrical leakage through the alumina insulators.

Accordingly, & test program was conducted wherein different mounting
schemes for the tungsten rhenium thermocouples would be evaluated and compared
against platinum-rhodium and chromel-slumel thermocouples. In addition these
thermocouples were compared with pyrometer indicated temperature. Tempilac
temperature indicating paint was also used as a rough guide to temperature
level. All testing was conducted at 2300F in a small, resistance heated, tube
furnace, that is routinely used for RCC acceptance testing on the LESS
program. The thermocouple mounting techniques employed are illustrated on
Figure 7-57, while a schematic of the test is provided as Figure 7-58.
Photographs of the test set-up and specimens are shown on Figures 7-59 through
7-62. Note that the thermocouple leads were covered with thermal insulation
to maximize the thermal gradient along the leads from the juncticn aft.

The tungsten-rhenium thermocouples were mounted to RCC segments and either
routed straight aft (perpendicular installation) or run along the surface of
the RCC a short distance before Leing run aft (parallel installation). Both
Astroceram A and Sermetel 487 bonding materials were tested. The platinum
rhodium thermocouples, which were used as the prime source for comparison are
the standard temperature measuring devices for tube furnace operation; they
are installed in wells and were not attached to the RCC.

The specimens were exposed for at least 10 minutes (with temperatures
recorded at one minute intervals) to assure reaching steady state




temperatures. Representative data are summariged in Table 7-1. Note that

three different pyrometers were employed. Examination of the data reveals
rather good consistency for the tungsten rheniuw thermocouples with no
significant difference in results between perpendicular or parallel
installation, or between Astroceram or Sermetel bonding. More significantly,
the data is comparable to that obtained with the platinum-rhodium
thermocouples, being only an average 15F lower, considering all the data.
Note also that the Ircon 300 pyrometer was in relatively good agreement with
the thermocouples, certainly not producing the 300 - 350F disparity found in
the plasma test. Where Run #6 produced high pyrometer data, the recheck with
refocusing confirmed consistency with the thermocouples. The Tempilaq also
confirmed that a large temperature measurement discrepancy does not exist.

The chromel-alumel thermocouples read consistently low for some unknown
reason and shed no light on the prime question. :

In conclusion, these tests demonstrated that the use of tungsten rhenium
thermocouvples and the mounting and routing scheme used in the plasma models
did not result in low thermocouple readings. Further, the Ircon 300 data
suggests that the disparity encountered in the plasma test is facility
related. The prepondrance of data from this test and analysis leads to the
conclusion that the thermocouples were indeed predicting the more correct
temperature results in the plasma arc test. The only unknown in these
investigations is whether there is some problem in the data system in the
plasma arc facility that would produce a consistent bias in all thermocouple
readings.

Te3.3 Conclusions - Temperature data from the thermocouples were
consistent and repeatable in the plasma arc tests at NASA/LaRC. Experimental
results showed that these data were not effected by the method of attachment
to the model, the routing scheme, or electrical loss through the insulators.
Thermal analysis also confirms the reasonsbleness of the thermocouple data,
and by contrast cannot support the pyrometer data. It is concluded by the
prepondrance of data that the thermocouple data is correct and the pyrometer
results must be high. The only factor that could change this conclusion would
be a bias error in the plasma arc facility data systems, and this has not been
indicated.

7.4 NASA/ARC Plasma Arc Test Anomaly

Experiencing Z350F during the first exposure cf the test model in the
NASA/ARC plasma test, when the calibrator model indicated that the target
temperature of 2660F should have been reached, prompted a study to investigate
possible sources of the anomaly. Several possibilities were postulated as
follows:

(1) The presence of the penetration assembly could have altered internal
cross-radiation relief, causing the disc to run hotter.

(2) Loss of coating from the holder changes the non-catalytic surface to
catalytic with resultant higher hclder temperature, which pumps more
heat into the disc.

(3) The costed columbium port could be catalytic, thereby operating at a
higher temperature than encountered in previous tests, and drive
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TABLE 7-1
TEST RESULTS

(Temp. °F)
PYROW.
SPECIMEN NO. CHECK
INSTRUMENT CALIBRATION 1 2 3 2
(10 Min ) (6 Min ) D (7 Mina) (V)]
"MANUAL . - - - 2057
- - - - i(1990)
pHoTO 11 €. (2) 2393 2380 2170 2393 | 2045
£=1.0 (&) (2280) (2270) (2090) 3] (2280) (1980)
IRCON 300 €, (2) 2382 2288 2522 2315 | 2057
€=1.0 (@ (2248) (2177) (23a8) 3N (2198) J(weo)
Pe/Py 10 Rh #1 2295 2230 2275 2290 [ 1990
Pe/Py 10 Rh #2 2300 2290 2300 2200 | 2010
W/Re 1 ASTRO 2260 2260 2270 | 2000
i 2260 2260
2255 2270
W/Re 11 ASTRO 2280
Failed
W/Re L SERM. 2260
Failed
CHROMEL ALUMEL 2191 2235 1975
ASTRO
TEMPILAQ 2200F . Melt Melt Melt
2300F - Melt Melt Melt
2400F - C No M1t T no Melt | No mert(®)
. 2500F - l No Melt No Melt No Melt

NOTES:

(1) Time into run when data was taken.

(2) Bracketed values are raw data for an emittance of 1.0. Unbracketed temperatures
reflect spectral emittance corrections for the wavelength sensitivity of the
specific pyrometer used.

(3) Pyrometers probably misfocussed leading to pyrometer check run data in last
coiumn,

(4) No melt but dark spots present. 3




more heat into the disc. The NASA/ARC plasma arc operates at ar
enthalpy level about three times as great as the NASA/LaRC fecility,
thus producing conditions, where catalycity effects become pronounced.

(4) Local 8ap heating around the edge of the port could provide increasec
heating to the disc.

(5) A corbination of the above could exist.

As a point of clarity a portion of the plasma in an arc jet facility i:
dissociated; the higher the enthalpy the greater the dissociation. i
catalytic surface is one that promotes the recombination of atoms intc
molecules; the heat of recombination is then ‘given up to the surface, anc
maximum temperature at a given heat flux exists. A non-catalytic surface
prevents this recombination of atoms and therefore operates cooler. Materials
can exhibit characteristics between these extremes, where partial recombina-
tion occurs.

The study, reference 19, was ccnducted by developing a thermal math model
of both the plasma test specimen and the calibrator. The test specimen matt
model was geometrically a duplicate of one used previously. The imposed heat
flux and distribution across the front face and along the sides of the model
holder were iterated to produce a reasonable correlation with measured '
temperatures at the front and aft face of the calibrator disc. This heat flux
was then imposed upon the test model to assess the impact of the penetratior
port. Adjustment factors were applied to both the heat flux and heat fluy
distribution to assess the effect of catalycity of the holder and/or port, ané
to determine the influence of local gap heating. Since the precise enthalpy
of the test facility was unknown, both 7000 Btu/lb and 12000 Btu/1b were
analyzed to bracket the estimated 9000 Btu/1bd operating enthalpy.

The two math models are pictured on Figurcs 7-63 and 7--€4, while the basic
impnsed heat flux and distribution are shown in Figures 7-65 and 7-66. The
initial heating ramp on Figure 7-65 attempts to account for the model moving
into the plasma stream. Predicted versus measured temperature response for
the calibrator, using this shaped heat flux, is shown on Figure 7-67. Gooc
agreement was reached for the outer surface, and the 240 sec. time at the
inner surface. Analysis produced higher heating rates on the inner surface
earlier in the exposure than measured, but further refinement was deemec

unwarranted, since we were searching for a nearly 300F surface temperature
discrepancy.

Using the calibrator model derived heating rates and applying gap heating

factors of 1.63 at node 31 and 1.23 at node 32, produced the results shown or

. Figure 7-68 for the penetration model Predicted temperatures are
substantially below measured values, thus eliminating gap heating as &

dominant factor in the high exposure temperatures experienced. Note that the

calculated outer surface is 60F higher and the inner surface is 40F lower at

240 sec. than computed for the calibrator. This was verified as being due to

the gap heating effect. When the test model was analyzed without gap heating,

surface temperatures lower than for the calibrator resulted, because of the
added heat sink of the penetration assembly.
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The effect of holder front face catalycity influence was examined by
increasing heat flux to the bare graphite by a factor of 2.67 for 7000 Btu/lb
and 3.70 for 12000 Btu/lb enthalpy. The results are illustrated on Figure
7-69. Predicted temperatures approach measured outside values at 240 sec. and
bracket inner wall measurements. The extreme heating rate on the outer
surface is not approached.

When only the penetration port was assumed fully catalytic, Figure 7-70, a
higher heating rate was obtained than that on Figure 7-69, but end
temperatures were roughly equivalent.

The two above analyses were conducted to show individual effects. Because
the holder face was eroded and definitely catalytic, yet did not totally
account for the high temperature phenomenon, it became apparent that a
combination of partially catalytic port and catalytic holder would produce the
best correlation with test data- This produced the final results shown on
Figure 7-71, where the enthalpy bands bracket the measured temperatures at 240
sec. The results were based upon a recombination rate for the columbium port
of 2212 cm/sec. (A recombination rate of zero is for a non-catalytic surface,
while a fully catalytic surface has a recombination rate of infinity. For
comparison coated RCC has a calcuiated recombination rate of 410 cm/sec.,
which is in the low catalytic range.) Note that the temperature response rate
on Figure 7-71 does not track the extreme hesting rates from test. It is
believed that much better correlation could be achieved by reshaping the
initial incident heat rate on Figure 7-65. However, it was felt that this
additional expenditure would not effect the end conclusions.

The end surface temperatures achieved in the final computation are as
follows:

COMPONENT Enthalpy, Btu/lb.
7000 12000
Columbium Port 2T29F 2821F
RCC Disc 2883F 2993F
Holder Surfa~e %195F 3517F

It is sign.ficant to note that the temperature of the columbium port is
reasonable and does not exceed the temperature limit of the VH109 silicide
coating, which is in excess of 3000F.

T.4.1 Conclusions

(1) These analyses indicate that the over-temperature condition,
experienced in the NASA/ARC test, was probably the result of a
combination of catalytic heating on the front face of the holder,
once the coating was lost, and a partially catalytic columbium port.
These conditions were promoted by the high operating enthalpy
(approximately 9000 Btu/lb.) in this test facility. This phenomenon
wvas not encountered in the NASA/LaRC tests, because that facility
operates at a relatively low 3000 - 4000 Btu/lb., which is not
conducive to significant catalytic effects.




Gap heating around the port was found to have a modest influence on
the surface temperature.

(3) The presence of the penetration assembly and its effect upon
cross-radiation and, therefore, surface temperature was found to be a
ron contributing factor in the high temperature experienced in test.
In fact, this factor alone would result in a lower temperature than
that of the calibrator, due to the added heat sink.

(4) Improved shaping of the imposed heat flux would result in a better
time history correlation of computed versus measured temperature
response.

T.4.2 Ramification of Catalytic Effects - One of the thermal analysis
runs assumed a fully catalytic port and a non-catalytic RCC disc and holder.
This produced a port temperature 400F higher than the RCC for an enthalpy of
12000 Btu/lb. This differential is conservative because the port is not fully
catalytic. However, this temperature differential was analyzed to determine
its impact upon, (1) the interface clearances between the penetration assembly
and the RCC, and (2) locally higher radial thermal gradients in the RCC.

The radial stress situation was examined by assuming the full temperature
gradient acts on fully restrained RCC, but the magnitude of the gradient was
proportioned according to the temperature at which the maximum gradient occurs
without catalytic effects. Without considering catalycity the maximum radial
gradient is 234F at 1100 sec. during heatup and produces a stress of 384 psi.
Assuming catalytic effects, the gradient at this time increases to 398F and
the stress rises to 653 psi which is rot significant. These stresses are
computed assuming the simplistic relation F = E a AT where:

= elastic modulus
coefficient of thermal expansion
temperature differential

> o ™
1]

T

The change in diametral clearance between the port and RCC at maximum
temperature, assuming the port is 400F hotter, is computed to be only 0.00057
inch. The axial growth was similarly examined and an additional gap between
the ccnical port head and countersunk hole in the RCC of 0.00010 inch was
computed. Both of these values, which are conservative, are considered
insignificant.

Therefore, it is concluded that a partially catalytic port in combination
with the catalytic RCC will pose no problem.




3.0 THERMAL EXPAKSION TEST OF COLUMBIUM PRESSURE TUBES

The coated columbium pressure tubes are subjected to forced deflections
juring launch arising from nose cap support bulkhead bending. This in turn
zauses the support posts to rotate slightly, pulling the presssure tubes with
them. Additionally, during entry, the pressure tubes heat to about 2580F
iverage and expand along their ilength, but they are constrained at the ends by
the nose cap and the support post. This expansion requires that the tubes be
’>ent to relieve potentially high themal stresses imposed by restraint.
lowever, even with tube relief bends, some tube bending stress is still
induced. If this stress is sufficiently high during the imposed
time/temperature profile, creep strain can occur. Then, during cooldown,
reversed stresses are induced, becoming maximum at the cooled condition. This
possible creep, then cooldown cycling with its attendent stress reversals,
zould ultimately cause a breach in the coating and produce oxidation failure,
or low cycle fatigue. Hence, the need for a thermal cycling test to evaluste,
axperimentally, the survivability of selected pressure tubes in this
temperature cycling environment.

Initial ©boost phase calculations by Vought indicated forced tube
leflections from bulkhead bending could be as high as 0.25 - 0.30 inch
(Section 4.8.2). Subsequent analyses by Rockwell for a reduced load 1launch
condition and shorter support tubes, resulted in forced deflection conditions
an order of magnitude less. The associated tube stresses thus became
inconsequential. However, the Rockwell predictions were made after the tube
test rig was designed to accommodate a forced deflection feature, which was
not used.

Rockwell analysis showed that tubes #5 and #8 would be the most critical
for the thermal stress environment. Each of these %tubes were tested, #8 in
tripilicate and a single #5 tube. These VH109 coated columbium tubes were
supplied by Rockwell to Vought for teating. They were of the final
sonfiguration; i.e., 0.25 inch diameter with 7.015 inch wall.

A schematic of the test arrangement is illustrated in Figure 8-1. A bare
3tackpole cucu graphite fixture was employed to support the nose cap end
>enetration assembly and the post supnorted end of the tube. The nose cap end
ronsisted of a 2.8 inch diameter RCC disc, complete with penetration assembly
‘and ball lock anti-rotation device) to simulate the installation in the nose
:ape. The other end of the tube passed through alumina and glass rock
.nsulators and was clamped by a split graphite conical retainer.

Tube length at the "support post" end was increased by 2.5 inches to
iccount for thermal expansion deflection that would be imposed by a 100F
support post, and to offset the themal expansion relief from the graphite
‘ixture, which was allowed to reach SOOF during test. The 100F support post
temperature was obtained from a Rockwell thermal analysis and sccurs at the
time of peak pressure tube temperature. The 500F graphite temperature was a
self imposed limit, guided by a themmal analysis of an insulated graphite
‘ixture, and later verified as being a reasonable limit, based upon
ralibration runs.

Initially it was planned to heat the tube assembly in air in the Vought
fission Cycling Facility which employs resistance heated SiC rods. Pressure
luring the period of maximum tube temperature ranges up to about 1 mm Hg, but
in order to prevent arcing between SiC rods, this was increased to 50-60 mm Hg
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with Rockwell concurrence. However, even at this pressure it was found that
the 2580F temperature could not be achieved without breakage of heater bars.
The potential damage to test tubes from falling debris forced the test to be
moved to another facility, one in which bare graphite heater bar elements
could be used.

The test was finally conducted in the Vought Nerva vacuum chamber in the
arrangement depicted in Figures 8-2, 8-3 and 8-4. Two tubes were cycled
simultaneously. They were rolled under the heater elements for the heat pulse
and then rolled back under a water cooled cover for cooldown. Temperature was
monitored and controlled by two tungsten rhenium thermocouples attached to
each tube and three on each graphite holder as shown on Figure 8-5. Testing
was conducted in air at 0.4 mm Hg, which was representative of the flight
pressure at peak temperature. A calibrator tube of the No. 8 configuration
was used to establish the test procedure and was instrumented with five
thermocouples, four of which were not covered by insulation. Results showed
that the desired conditions could be met and that temperature distribution
along the pressure tube was satisfactory, varying by a maximum of 31F for the
four exposed thermocouples.

Although no attempt was made to exactly duplicate the flight time/
temperature profile, it was a goal to roughly produce the flight temperature
pulse to assure that if creep were to occur there would be sufficient time for
its' development. But, over-test, that could yield unrealistic creep, was to
be avoided. The fidelity of the test profile is shown on Figure 8-6 where a
typical cycle is shown scainst the computed flight temperature history. If
the flight profile is slid to the left to eliminate the initial slow heatup
portion of the curve, it can be envisioned that the peak temperature region of
the curves will superimpose satisfactorily.

The results of this test, reference 20, were both disconcerting and
gratifying: disconcerting, in that tube fractures occurred, ranging between
68 and 136 cycles with one going 140 cycles without failure; gratifying,
because the test environment produced severe embrittling of the tubes and yet
they withstood the thermal stress conditions for at least 68 cycles. This is
at least a factor of two longer than the coated columbium penetration
assemblies are expected to survive. A typical fracture is shown on Figure
8-7. The embrittlement was investigated by Rockwell, where they concluded
that the problem resulted from incomplete oxidation of the heater bars in the
presence of low pressure air. The production of CO, rather than €Oy,
resulted in a smaller molecule being generated than 0, for which the coating
was designed. The CO was able to penetrate the microcracks in the silicide
coating and combine with the underlaying columbium. Micrographic analysis,
conducted by Vought on one failed tube, revealed a nearly single crystal state
in the high temperature, embrittled region, while at the cooler tube ends
normal granular structure was observed.

As a qualitative check of the local atmosphere, a shiney, steel bar was
inserted in the facility during seven test cycles. At the conclusion of
exposure the bar was dull gray with a mottled appearance indicating neither a
completely reducing atmosphere nor a highly oxidizing one.

It was concluded that the thermal exposure of the pressure tubes, resulted

in a gross overtest, due to the nature of the local atmosphere, and that more
ductile tubes would have survived without fracture.
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Two other observations from the test are noteworthy. Typically, flaking
of the coating was observed. This was discovered in chemical compatibility
tests conducted in a 1 atm furnace and has been observed on components exposed
in a plasma arc. This is apparently normal for the VH109 coating system and,
while it may reult in reduced life, the 1life of the system is deemed
satisfactory.

The second observation was that a deposit of material tended to form in
the tube just down stream of the flare. No deposits were found in the unions
or ports. (The other end of the tube was stuffed with insulation and no
deposits accumulated there.) The deposited material was analyzed by Rockwell
and found to be silica, believed to come from outgassing of the silicide
coating at low pressure and high temperature. The gaseous product traversed
toward the open end of the tube and then condensed at a cool region of the
tube creating a degree of blockage. This is not expected to be a flight
problem since (1) the port end of the tube remains hot, when the center
section is hot, preventing condensation, and (2) localized pressure and flow
at the port hole from leakage or turbulence should discourage buildup.

The cycling history for the four tubes tested is as follows:

SPECIMEN TUBE CONFIGURATION CYCLES COMPLETED FAILURE

T74-87 Yes
140 . No
68 Yes
136 Yes

The specific cycle of failure for specimen number 1 is unknown, since
initially the tubes were to be inspected after each block of cycles.
Subsequent to the first tube failure, visual inspection was made through a
sight port in the side of the chamber. Note that all of the failed tubes are
of the No. 8 configuration.

Measurement was also made periodically of the dimensional location change
of the manifold end of the tube. The purpose of this was to obtain & "feel"
for accumulated creep set during exposure. Upon initial assembly of the tubes
into the graphite fixtures, the manifold end of the tube was allowed to seek
its own location along the tube axial direction before ¢clamping it in place.
The location of the end of the clamped tube was determined relative to the
fixture surface. After "x" thermal cycles, the clamp was released and the
movement of tube relative to its' initially installed location (set) was
determined. The tube was then repositioned to its' initial locetion for
continuance of the test. "Set" measurements (overall shortening of the tube)
are as follows:

SPECIMEN TUBE CONFIG. MEASUREMENT CYCLE "SET", IN.

50 0.19
50 0.2%
36 0.10

49 0.15
100 0.14




Certainly, the set measurements are not extremely accurate, but it is believed
that they do indicate that some creep strain takes place during the heat pulse
when the tube ends are constrained.

In conclusion, the test demonstrated that the pressure tubes would sustain
the accumulated thermal cycling in a constrained condition to levels in excess
of the expected 1life of the penetration assembly. This was even with
embrittled tubes which should be much more susceptible to fatigue cracking
than ductile material. Creep strain, judging from the set data obtained, does
exist but should not be detrimental for the life of the system with ductile
tubes.

The test atmosphere was unexpectedly severe for the coated columbium due
to the incomplete oxidation of the bare graphite bars to form CO rather than
CO5. Unfortunately, Vought was unaware of this potential problem, and
Rockwell did not identify this problem until the test was concluded.




9.0 VIBRATION TEST OF THE LEFT SIDE SEADS ASSEMBLY

9.1 Introduction

Probably the most complex test performed on SEADS was the random vibration
test of the left hand system. It was comprised of the manifold, seven
pressure tubes and the seven associated penetration assemblies. In an effort
to compromise between the high cost of an "all up" acoustic test of an
assembly (complete with a nose cap) and the desire for a comprehensive test
program, an approach was devised wherein two vibration shakers were employed
simultaneously. One shaker introduced the vibration spectrum representing the
nose cap, while the second shaker imposed a spectrum simulating the support
bulkhead response. Input enviromments were derived from responses measured
during the acoustic test of the baseline nose cap assembly at NASA/JSC. The
nose cap was simulated by a multifaceted aluminum casting to which the seven
penetration - semblies were attached. Two test setups were employed to
produce inputs in two separate pairs of axes, which were determined to be the
most critical by analysis. The test scheme is illustrated on Figure g-1,
while the overall test setup is shown on Figure 9-2.

The primary reasons for conducting this test were to:

(1) Validate the Rockwell dynamic analysis for both the left hand and
right hand tube arrays, since analysis was the means by which the
SEADS was certified for flight.

(2) Demonstrate the structural dynamic integrity of the system.

9.2 Test Environment

Rockwell had responsibility for establishing the test enviromments and did
a very thorough analysis in a logical manner. Details of the analysis are not
reported here but the approach is covered to indicate the soundness of the
test and resuits. The Rockwell pre and post test analyses are documented by
references 21 and 22.

Input levels at both the nose cap and nose cap support bulkhead were
derived from accelerometer response, measured during an acoustic test of the
baseline qualification nose cap assembly at NASA/JSC. The outputs were
enveloped to produce the random vibration test levels and exposure times like
those shown on Table 9-1. Note that the levels shown are the adjusted levels
for the designated test axes that were ultimately determined by analyses
discussed below.

The enveloped response spectra were imposed on each tube essembly using
finite element modeling techniques. A tube assembly consisted of the manifold
and the seven pressure tubes. Each tube was modeled as 26 nodes and 24
elements. Input vibration levels were simultaneously applied. In addition,
the model was used to generate static stresses for launch accelerations and
entry thermally induced loads. The output of the analyses included modes,
frequencies, vibration responses, deflections, stresses, and bending moments.
Dynamic and static stresses were combined to determine maximum siress in each
tube. Results showed that the tubes would not be over stressed and fatigue
life was adequate.
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TABLE 9-1 ' -3
SEADS RANDOM VIBRATION TEST CRITERIA X
¢
BULKHEAD .
X-Axis
20-25 Hg: +15aB/0CT *
25-30 Hg: 0.117g2/Hs i
30-40 He: -15dB/0CT
40-120 Hs: 0.025g2/Hz
120-300 Hg: -3dB/0CT
300-2000 Hz: 0.010g2/Hg
Y-Axis
20-50 Hg: +6dB/0CT
50-100 Hz: 0.018g2/Hg
100-2000 Hgz: -64B/0CT
NOSE CAP
Y-Axis
20-30 Hz: +6dB/0CT
30-50 Hg: 0.55g2/Hz
50-120 Hz: -10dB/0CT
120-600 Hgz: 0.028g2/Hz
600-700 Hz: +244B/0CT |
700-900 Hgz: 0.11g2/Hg
900-2000 Hz: -104B/0CT \
Z-Axia )
20-30 Hz: +6dB/0CT ;
30-50 Haz: 0.44g2/Hg I
50-120 Hz: -10dB/0OCT }
120-600 Hz: 0.022g2/Hz ;
600-700 Hz: +24dB/0CT
700-900 Hz: 0. 2/Hg
900-2000 Hz: -10dB/0CT
[ J !
DURATION '

42 seconds/mission/axis in each axis of vibration
(70 minutes/axis/100 missions)

C e e—pm———— =




Next, the optimum test setups were determined by analyzing the tube
tresses for nine combinations of input vibration - 3 axes at the nose cap end
nd 3 axes at the bulkhead end. Examination of results showed that two shaker
stups would produce maximum stress levels in all tubes without significantly
verstressing any one tube. The selected axes were:

(1) Bulkhead Y-axis with Nose Cap Y-axis
(2) Bulkhead X-axis with Nose Cap Z-axis

Because the test inputs are in one axis, rather than three simultaneously,
esultant stresses would necessarily be lower than flight if the analyzed
nput single axis spectra were applied during test. This was resolved by
djusting the test spectra upward to produce flight computed stress levels.
he adjusted levels are those listed on Table 9-1.

9.3 Test Configuration

As previously noted, the left hand system was selected for test because it
iad the longest manitold with the greatest tilt angle relative to the support
oulkhead. This tends to produce larger manifold response to bulkhead X--axis
-ibration. Pressure tube dynamic analysis confirmed that this was true for
108t of the tubes.

The test haidware consisted of the flight design manifold assembly, seven
:oated columbium pressure tubes and seven penetration assemblies mounted in
2.8 inch diameter RCC discs to duplicate the nose cap mounting. The RCC discs
vere clamped to a cast aluminum test fixture, which was machined to provide
Facets for acceptance of the RCC discs. Thus, each penetration assembly was
nounted in the same position as it would be in the nose cap. The assembly is
shown on drawing 221GT4098, Figure 9-3. Note that this drawing is actually a
nirror image of the desired test article and is discussed in Section 9.5.

The penetration assemblies varied in configuration and port material. Two
>f the ports, Nos. 7 & 11 were coated graphite, while the other five were
soated columbium. Two anti-rotation features were employed as well as no
locking feature. Port Nos. 6 & 9 employed a flat sided hole in the disc to
restrain port rotation and port Nos. 7 & 10 used the synthetic ruby ball lock
soncept to prevent rotation. (See Section 6.4 for descriptions.) The
remaining ports employed no anti-rotation device.

The reason for testing graphite was that it had not yet been demonstrated
that the coated columbium would survive the flight temperature and the
vibration test provided an opportunity to evaluate coated graphite in the
dynamic environment as a backup material. Plasma testing of graphite had
already been conducted to show that it did have some mission life.

Similarly, alternate lock featuree were tested, since none had beer firmly
selected, and it wasn't even clear that an anti-rotation device was needed.
As it turned out, no observable oscillations of the ports in the discs
occurred, even with no 1lock. However, the flat sided hole approach was
ultimately incorporated into the SEADS nose cap as a safeguard.

The test support bulkhead was simulated by a block of aluminum to which
the manifold was bolted. The support bulkhead stiffness did not have to be
represented, since bulkhead response was an input loading for the test.
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Although this vibration test would not adequately test the manifold
insulation, it was included in the test configuration to provide a
representative mass and to evaluate the installation of the insulation system.

The insulation, manifold and columbium pressure tubes were designed by and
provided by Rockwell. All other components and designs were Vought
responsibility.

The shakers had to be elevated to place them in proper position for test.
Support structures were fabricated from welded 6 inch square steel tubing.
One of these is shown on Figure 9-2. The support structures and fixtures were
evaluated to assure no adverse response.

9.4 Instrumentation

Four triaxial accelerometers and four axial accelerometers were installed
on the "nose cap"” fixture, one triaxial accelerometer was mounted to the
“bulkhead” fixture, and two triaxial accelerometers were attached to the
manifold, one at the base and one at the free end. The four axial
accelerometers were located adjacent to selected penetration assemblies to
detect any loosening, should it occur.

In addition, each pressure tube was instrumented with three axial strain
gages at each end of the tube with each gage spaced 120° apart. These were
mounted as close to the fixed ends as possible. The base of the cylindrical
section of the manifold was also instrumented with three rosette gages mounted
120° apart. The manifold strain gages were calibrated by bending about two
axes and by applying compression along the axes, reference 23. This was done
to provide backup data in the event there was an anomally in the accelerometer
data. The pressure tube strain gages were not calibrated since there did not
appear to be a satisfactory way to accomplish it.

The number of desired data channels (21 accelerometers and 51 strain
gages) far exceeded the recording capability so it was necessary to
selectively sample the data for one minute intervals through the first three
minutes in each test axis to gather data on all of the channels. The data was
then reviewed and the most critical channels were selected for recording for
the duration of the test.

9.5 Installation and Setup

Accurate positioning of the shakers was extremely important to assure the
proper geometric relationship between the "nose cap” and "bulkhead" to avoid
taving to forcibly bend the pressure tubes into place. This was accomplished
by fabricating a tubular fixture that spanned the distance between shakers.
This permitted fine adjustment of shaker location, and it worked well.

A serious problem surfaced during the trial setup. It was discovered that
the entire Vought test system was designed and built around the mirror image
of the left hand assembly, while the Rockwell tubes and manifold were designed
correctly. With all the checkers, reviewers, and signers of the controlling
drawing (Figure 9-3) no one noted the drawing error. 1t was a case of "not
seeing the forest for the trees."
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The solution was relatively simple, however. The manifold could be
lalvaged by rotating it about its mounting base until it was oriented into a
iirror image position. All of the pressure tubes on the other hand had to be
‘efabricated to produce mirror image components. With this approach we were
1ble to test a system dynamically identical to the left hand system. This
‘equired new pressure tube check fixtures, but it was the least costly and
least schedule consuming approach.

A new problem was encountered by Rockwell during refabrication of the
ressure tubes. In the process of adjusting the last tube to the proper
jeometry the end of the tube broke at the juncture of the uncoated to coated
rortion of the tube, indicating a brittle condition. This was traced to the
>xidation test of the tubes, which is routinely conducted to assure soundness
>f the coating. The uncoated portion of the tube was "protected” by wrapping
and stuffing with Fiberfrax insulation. However, the end of the tube exceeded
300F and was embrittled by oxidation. Rockwell corrected this by employing a
water cooled collar on the uncoated end when the tubes were remade. No
further problem was encountered.

A set of aluminum tubes were also fabricated to use in fit check of the
setup, and to establish the procedure for cutting and flaring on assembly.
This was a good idea and added experience and confidence before committing the
columbium tubes to the cut and flare operation.

It was discovered during the trial assembly that three of the seven
2lbows, that install in the end of the manifold and tie to the pressure tubes,
were out of angular tolerance. These were standard procured parts. Rockwell
supplied replacement units so we could pick and choose acceptable units. When

this was corrected the pressure tubes mated up well between the "nose cap" and
nanifold.

Installation of the columbium tubes worked equally as well. The flaring
operation was conducted by a Rockwell representative. Small cracks in the end
of the flare were observed on two tubes but these were dressed up and found
acceptable. Installed tubes are shown on Figure 9-4 after trial installation.

Installation of the insulation system on the manifold proved to be
somewhat difficult. This was a five segment configuration with two of the
segments, that sandwiched the manifold, split in two. The insulation system
components are shown on Figure 9-5. The two collars had to be slipped onto
the manifold before the tubes were assembled, then the manifold end cap
insulation segment was installed. This is shown on Figure 9-6. The collars
were then slipped into place, using mylar to facilitate this operation. The
installed collars and the mylar can be seen on Figure 9-7. The fit was so
tight between the inner collar and the end cap and pressure tube elbows, that
a great amount of force was required. As a result severe damage to the inner
layer of fabric occurred, as illustrated on Figure 9-8. It was concluded that
this would be a very difficult task if it had to be accomplished inside the
nose cap. The remaining segments are shown installed in Figure 9-9. Note
that the segment toward the base of the manifold was modified from the
original flight configuration to match test geometry and the segments were
taped rather than strapped in place because of this. It was observed that
significant corner gapping was present, where segment halves came together,
and it was feared that this would admit radiation heating. In addition, the
platinum wire wound around both collar segments was judged to be too loose and

QRISNAL PAGE IS
OF POUR QUALITY 89




fragile to be effective. As a result of the installation experience and
observations made, Rockwell undertook to redesign the insulation system for
flight. The fact that the insulation was installed for the vibration test
proved highly beneficial in ferreting out problems.

After the insulation was in place, the unions and nuts at the penetration
assembly were torqued to 20 in.-1b. using a torque wrench. This torque was
judged to be sufficiently low to prevent self bonding of flight hardware, yet
provided a finite, measurable value to be used for inspection. Previously, we
were using the qualitative "finger tight" specification. The amount of torque
to unscrew the nuts from the union were measured after test and are covered in
the next section.

9.6 Test

Some months prior to the test, a meeting was held with NASA and Rockwell
to cover all details including alignment of shakers, installation of test
hardware, movement of shaker heads between the ‘'at rest' and 'power on'
condition, method for reconfiguring the assembly for the second set of axes,
instrumentation, method of control, equalization, control tolerance, automatic
abort limiters, startup and shutdown transients, and responsibility for early
termination of a run should it be necessary. In short, all details of the
whole operation were discussed to assure that all parties involved understood
and agreed to the method of conducting the program. This meeting was
considered both necessary and worthwhile to assure technical excellence and to
avoid post test disagreements.

The Y-Y axis configuration was tested first. Three one-minute tests were
conducted first to allow acquisition of all data, since a maximum of 18
accelerometers and 22 strain gages could be recorded at one time, due to
limited recording capability. For the compietion of the test only the most
prominant of the data, as determined by the three initial runs, was recorded.
Two nine-minute runs were made to conclude the planned 2l-minute test
duration, which is equivalent to 30 missions including a scatter factor of
four.

The X-Z axis configuration was tested in a like manner for a total of
2l-minutes.

All data was recorded on magnetic tape and is available for review.
Typical control accelerometer data for the nose cap and bulkhead ends are
shown on Figures 9-10 and 9-11, respectively, for the Y-Y axis test.
Specified upper and lower pre-test limits are shown for comparison. Typical
X-Z configuration data for the control accelerometers is shown on Figures 9-12
and 9-13.

Maximum deflection of the shaker heads when power is applied was measured
and shown on Figure 9-14. These produce forced deflections of the pressure
tubes, but are considered rather modest.

Predicted versus measured stresses for each of the tubes are summarized on
Table 9-2. These were developed by Rockwell. In general predicted stresses
were higher than measured, due to the purposely conservative analysis. Only
Tube No. 8 displayed a significant reversal in the trend, which is discussed
below. A comparison of predicted and test natural frequencies is shown on
Table 9-3. The correlation is quite good.
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COMPARISON OF PRESSURE TUBE STRESSES

TABLE 9-2

3 PEAK TUBE STRESS, Pol
TUBE TUL: Y-Y AXES* X-Z AXES*®
NO. END TEST ANALYSIS TEST ANALYSIS
5 Blkhd. 5640 7548 5264 8312
Nose Cap 3399 11179 2578 6737
6 Blkhd. 4984 7311 4480 6970
Nose Cap 2669 9412 2298 7430
7 Eikhd. 5144 8706 4429 6813
Nose Cap 3441 7837 3246 6679
8 Blkhd. 14836 12730 10872 8458
Nose Cap 4801 7344 1665 3459
9 Blkhd. 3172 8478 T416 10712
Nose Cap 2048 4427 3770 3877
10 Blknd. 3600 1856 8244 9380
Nose Cap 2519 3957 3708 6650
11 Blkhd . 4638 7099 6552 8338
Nose Cap 5838 5618 4086 5550
*#Y_.Y Axes = Shaker Y-Axis Bulkhead and Y-Axis Nose Cap.
X-Z Axes = Shaker X-Axis Bulkhead and Z-Axis Nose Cap.
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TABLE 9-3

COMPARISON OF NATURAL FREQUENCIES

FREQUENCY, HERTZ

TUBE ANALYSIS Y-Y X-Z
NO. TEST TEST
5 62 62 60
6 64 64 60
7 68 60 60
8 105 110 -
9 68 60 70
10 79 80 80
11 63 60 60




Tube No. 8 displayed the highest strain levels for ©both test
onfigurations, and typical of all tubes, was greater at the manifold end than
he penetration end. This tube was the straightest of all, having two 90°
ends, but no 180° bends, so it perhaps, is not surprising that the strain
as highest. Typical PSD strain plots of Tube No. 8 response are shown on
igures 9-15 through 9-18 for both tests and at each end. The "M" designation
efers to the manifold end, while the "P" denotes the penetration end. Both
ages aie at the 0° circumferential location on the tube.

The low frequency response was typical of all of the tubes, and was
elieved to be due to forced deflection, rather than resonant frequency. This
as confirmed, when the controcl accelerometers were analyzed for
isplacement. A typical PSD of displacement is shown on Figure 9-19. It
eveals a shape similar to the strain gage data, providing evidence that the
igh strains are not resonance induced.

Rockwell re-analyzed this low frequency region for Tubes 5 and 8,
eference 22. These tubes represented both a typical and stiffest tube
'espectively. Strain spectral density (SSD) plots were generated which
ompared very favorably (though conservatively) with the test results.
ypical results for Tube 8 are shown on Figures 9-20 and 9-21.

The test hardware withstood the vibration test with no problem. No
ailures were encountered and no 1loosening or rotation of penetration
asemblies was evident by either visual observation or accelerometer data.
his was true with or without an anti-rotation feature.

Nut to union removal torques varied between 5 and 30 in.-1b., with the low
nd typical of tubes 5, 6 and 8 and the higher torque for tubes 7 and 11. In
he course of removing the No. 9 penetration assembly, the graphite port was
yroken. It isn't clear if the graphite was damaged during test or whether
‘ailure was the result of improper disassembly technique. It does point out,
owever, that if graphite was to be used, much more data on the performance of
he material would have to be gathered, and greater handling care would have
o be exercised.

The ends of the flares on the pressure tubes appeared to have coating
amage, which is typical of findings in the plasma test programs. The best
nd worst of the tube ends are shown on Figure 9-22. This region is fragile
nd vulnerable to chipping, when sandwiched between the union and nut.
ockwell exposed the tubes to 2000F for 15 minutes at 1 atm to determine
xidation resistance. It was found that there was no evidence of oxidation
.long the tube length, but the suspect area at the flare end, produced
xidation products. This is typical of the plasma arc test experience. They
roposed that this vulnerability could be reduced by dressing the local
oating buildup to avoid the localized crushing of the coating.

In conclusion, once the test program overcame the early diappointments of
irror image hardware and brittle tubes, it was well conducted and
emonstrated the integrity of the SEADS design in the dynamic environment.
urther, the use of two simultaneous, independently controlled shakers, is
relieved to be unique. ’

Analytical predictions were deemed adaquate to certify the tubes for
‘l1ight and all stresses were within the allow.bles.
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The
follows:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

FINDINGS

most significant fipdinga from this program may be summarized as

Holes can be introduced into the nose cap shell without impairing
its structural integrity, as determined by analysis.

The introduction of SEADS penetration holes does not reduce the
mission life of the nose cap as demonstrated by long term plasma arc
test exposure.

Silicide coated columbium will survive the design temperature for
multiple missions and will tolerate significant temperature
overshoot.

Small diameter, unsupported pressure tubes can be designed to
withstand the Shuttle dynamic enviromment and yet be flexible enough
to avoid damaging thermal stress.

With the application of silicon carbide powder, as an anti-seize
compound, self bonding of silicide coated columbium, exposed to high
temperature, can be prevented for an acceptable operational period.

Silicide coating of the inside of small diameter columbium tubes can
be accomplished.

Siliconized graphite can serve as a viable backup to coated
columbium port components, although with a reduced mission life.

Iridium wire provides an effective lockwire approach.

The oxidation rate of unprotected columbium is sufficiently slow, at
least in the 2500F region, as to pose no safety of flight concern,
when the silicide coating is breached.

Coated columbium is pertially catalytic and must be accounted for in
high enthalpy enviromments.

Optical pyrometer and thermocouple temperature measuring techniques
can provide widely differing data in plasma arc testing.
Controversy persists on which device is the more accurate.

Vibration testing, using two independently controlled shakers, is
feasible.

Pressure measurement for this system is practical, even with high
temperature, finger tight joints, although response may suffer.

A ball lock device, employing a synthetic sapphire sphere, will
provide a satisfactory, high temperature, anti-rotation scheme.

Platinum and cobalt based alloys are chemically incompatible with
siliconized RCC when in direct contact.

am 14 wremonarry som
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(16) This development program, iavolving four entities (NASA/LaRC,

NASA/JSC, Rockwell and Vought), with the industrial companies
operating under separate contracts was accomplished without conflici
only because the personnel assigned worked well together, and were
dedicated to producing a satisfactory SEADS system.




11.0 CONCLUSIORNS

The SEADS system was developed over a period of years. The design is
supported by detailed thermal, static and dynamic analysis, as well as,
somprehensive thermal, static and dynamic tests. It is estimated that mission
life will be approximately 25-30 missicus. At this writing, only the
insulation subsystem has not been certified for flight; but, a forthcoming
system thermo/acoustic test is scheduled to accomplish this task.

As a result of the extensive and satisfactory development activities, the
system was judged acceptable to proceed into production design.




2,0 POSTSCRIPT

The SEADS system, which includes the nose cap and support bulkhead,
)gether with the pressure measurement and recording system have been
abricated. It is currently planned for installation on the 0V-102 Orbiter

»r operations at a convenient refurbishment period.

Photographs of the assembly are provided as Figures 1-4 and 1-5. Omn
igure 1-5 some of the tubes can be seen, as well as, the insulation on the
wo manifolds and the pressure transducers mounted on the nose cap support

ulkhead.
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‘( 221-10025 Port (Plug) (Columbium)

221-10026 Spacer (RCC)

221-10027 lLoek Washer (Columbium)

221-10028 Union (Columbium)

Lockwire (Iridium)

221-1002% Nut (Columbiu
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| \/‘ Pressure Tube (Colw
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i

221-10022 Nose Cap (RCC) Ref.

FIGURE 1-2 - PENETRATION ASSEMBLY PRODUCTION DESIGN
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FIGURE 4-2 - THERMAL MODEL OF CONCEPT 6 TEST MODEL
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FIGURE 4-14 - POST TEST PHOTO OF -9 MODEL PLUG
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FIGURE 4-15 - POST TEST PHOTO OF -9 MODEL
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FIGURE 4-16 - POST TEST PHOTO OF -9 MODEL
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FIGURE 4-17 - -10 MODEL AFTER 3-HOURS OF TEST
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FIGURE 4-18 - -10 MODEL AFTER 3-HOURS OF TEST
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FIGURE 4-19 - -10 MODEL AFTER 3-HOURS
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FIGURE 4-20 ~ -10 MODEL AFTER 4-HOURS OF TEST
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FIGURE 4-21 - -10 MODEL AFTER 4-HOURS OF TEST

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH



FIGURE 4-22 - -10 MODEL AT CONCLUSION OF TEST
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FIGURE 4-23 - -10 MODEL AT CONCLUSION OF TEST
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FIGURE 4-25 - POST TEST PHOTO OF -11 MODEL
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FIGURE 4-26 - POST TEST PHOTO OF -11 MODEL
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FIGURE 4-27 - DISASSEMBLED -11 MODEL, POST TEST
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APPENDIX B

Lrawings of the detail

parts used in the second phase of the program are
ncluded in this appendix.
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